Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Virtual Design and Validation |
Erscheinungsort | Cham |
Herausgeber (Verlag) | Springer Nature Switzerland AG |
Seiten | 123-146 |
Seitenumfang | 24 |
ISBN (elektronisch) | 9783030381561 |
ISBN (Print) | 9783030381554 |
Publikationsstatus | Veröffentlicht - 4 März 2020 |
Publikationsreihe
Name | Lecture Notes in Applied and Computational Mechanics |
---|---|
Band | 93 |
ISSN (Print) | 1613-7736 |
ISSN (elektronisch) | 1860-0816 |
Abstract
In order to achieve significant weight reduction, multi-material concepts steadily gain importance in the automotive and aviation industry. In this respect, a new hybrid construction approach is the combination of steel and fibre-reinforced thermoplastics (FRT) in a sandwich design. The use of FRT provides a high lightweight potential due to the combination of low density and high tensile strength. Using thermoplastics instead of thermoset matrices enables the reduction of process times and component costs and thus becomes affordable in large-scale application. The combined forming and joining of FRT and steel sheets require elevated temperatures, which lead to a complex forming behaviour. Furthermore, the in-plane and out-of-plane material properties of the FRT, in particular the forming and failure behaviour differ strongly from that of conventional metal materials like steel or aluminium. Therefore, new material characterisation techniques, investigation methods as well as numerical models are required. However, the temperature dependent material behaviour of the steel component and the occurrence of material phenomenon such as blue brittleness also needs to be investigated and taken into account during numerical simulation. This research deals with the experimental investigation and numerical modelling of the material behaviour under deep drawing conditions in order to realize an efficient one-shot forming process with the help of numerical simulation. The numerical analysis is realised with the commercial FE-software Abaqus.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Maschinenbau
- Informatik (insg.)
- Theoretische Informatik und Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Virtual Design and Validation. Cham: Springer Nature Switzerland AG, 2020. S. 123-146 (Lecture Notes in Applied and Computational Mechanics; Band 93).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Experimental and Numerical Investigations on the Combined Forming Behaviour of DX51 and Fibre Reinforced Thermoplastics Under Deep Drawing Conditions
AU - Behrens, Bernd Arno
AU - Chugreev, Alexander
AU - Wester, Hendrik
N1 - Funding information: This work is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through the International Research Training Group 1627 “Virtual Materials and Structures and their Validation”.
PY - 2020/3/4
Y1 - 2020/3/4
N2 - In order to achieve significant weight reduction, multi-material concepts steadily gain importance in the automotive and aviation industry. In this respect, a new hybrid construction approach is the combination of steel and fibre-reinforced thermoplastics (FRT) in a sandwich design. The use of FRT provides a high lightweight potential due to the combination of low density and high tensile strength. Using thermoplastics instead of thermoset matrices enables the reduction of process times and component costs and thus becomes affordable in large-scale application. The combined forming and joining of FRT and steel sheets require elevated temperatures, which lead to a complex forming behaviour. Furthermore, the in-plane and out-of-plane material properties of the FRT, in particular the forming and failure behaviour differ strongly from that of conventional metal materials like steel or aluminium. Therefore, new material characterisation techniques, investigation methods as well as numerical models are required. However, the temperature dependent material behaviour of the steel component and the occurrence of material phenomenon such as blue brittleness also needs to be investigated and taken into account during numerical simulation. This research deals with the experimental investigation and numerical modelling of the material behaviour under deep drawing conditions in order to realize an efficient one-shot forming process with the help of numerical simulation. The numerical analysis is realised with the commercial FE-software Abaqus.
AB - In order to achieve significant weight reduction, multi-material concepts steadily gain importance in the automotive and aviation industry. In this respect, a new hybrid construction approach is the combination of steel and fibre-reinforced thermoplastics (FRT) in a sandwich design. The use of FRT provides a high lightweight potential due to the combination of low density and high tensile strength. Using thermoplastics instead of thermoset matrices enables the reduction of process times and component costs and thus becomes affordable in large-scale application. The combined forming and joining of FRT and steel sheets require elevated temperatures, which lead to a complex forming behaviour. Furthermore, the in-plane and out-of-plane material properties of the FRT, in particular the forming and failure behaviour differ strongly from that of conventional metal materials like steel or aluminium. Therefore, new material characterisation techniques, investigation methods as well as numerical models are required. However, the temperature dependent material behaviour of the steel component and the occurrence of material phenomenon such as blue brittleness also needs to be investigated and taken into account during numerical simulation. This research deals with the experimental investigation and numerical modelling of the material behaviour under deep drawing conditions in order to realize an efficient one-shot forming process with the help of numerical simulation. The numerical analysis is realised with the commercial FE-software Abaqus.
UR - http://www.scopus.com/inward/record.url?scp=85081634720&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-38156-1_7
DO - 10.1007/978-3-030-38156-1_7
M3 - Contribution to book/anthology
AN - SCOPUS:85081634720
SN - 9783030381554
T3 - Lecture Notes in Applied and Computational Mechanics
SP - 123
EP - 146
BT - Virtual Design and Validation
PB - Springer Nature Switzerland AG
CY - Cham
ER -