Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 15932–16034 |
Seitenumfang | 103 |
Fachzeitschrift | International Mathematics Research Notices |
Jahrgang | 2022 |
Ausgabenummer | 20 |
Frühes Online-Datum | 10 Juli 2021 |
Publikationsstatus | Veröffentlicht - Okt. 2022 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Mathematics Research Notices, Jahrgang 2022, Nr. 20, 10.2022, S. 15932–16034.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Existence of Equivariant Models of Spherical Varieties and Other G-varieties
AU - Borovoi, Mikhail
AU - Gagliardi, Giuliano Claudio
N1 - Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press. All rights reserved.
PY - 2022/10
Y1 - 2022/10
N2 - Let k0 be a field of characteristic 0 with algebraic closure k. Let G be a connected reductive k-group, and let Y be a spherical variety over k (a spherical homogeneous space or a spherical embedding). Let G0 be a k0-model (k0-form) of G. We give necessary and sufficient conditions for the existence of a G0-equivariant k0-model of Y.
AB - Let k0 be a field of characteristic 0 with algebraic closure k. Let G be a connected reductive k-group, and let Y be a spherical variety over k (a spherical homogeneous space or a spherical embedding). Let G0 be a k0-model (k0-form) of G. We give necessary and sufficient conditions for the existence of a G0-equivariant k0-model of Y.
UR - http://www.scopus.com/inward/record.url?scp=85157964415&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1810.08960
DO - 10.48550/arXiv.1810.08960
M3 - Article
VL - 2022
SP - 15932
EP - 16034
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 20
ER -