Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1992-2006 |
Seitenumfang | 15 |
Fachzeitschrift | SIAM Journal on Mathematical Analysis |
Jahrgang | 40 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Okt. 2009 |
Abstract
We consider here a? 2π-periodic and two-dimensional Hele-Shaw flow modelling the motion of a viscous and incompressible fluid. The free surface is moving under the influence of gravity and is modelled by a modified Darcy law for Stokesian fluids. The bottom of the cell is assumed to be impermeable. We prove the existence of a unique classical solution if the initial data is near a constant, identify the equilibria of the flow, and study their stability.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: SIAM Journal on Mathematical Analysis, Jahrgang 40, Nr. 5, 10.2009, S. 1992-2006.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Existence and stability results for periodic stokesian hele-shaw flows
AU - Escher, Joachim
AU - Matioc, Bogdan-Vasile
PY - 2009/10
Y1 - 2009/10
N2 - We consider here a? 2π-periodic and two-dimensional Hele-Shaw flow modelling the motion of a viscous and incompressible fluid. The free surface is moving under the influence of gravity and is modelled by a modified Darcy law for Stokesian fluids. The bottom of the cell is assumed to be impermeable. We prove the existence of a unique classical solution if the initial data is near a constant, identify the equilibria of the flow, and study their stability.
AB - We consider here a? 2π-periodic and two-dimensional Hele-Shaw flow modelling the motion of a viscous and incompressible fluid. The free surface is moving under the influence of gravity and is modelled by a modified Darcy law for Stokesian fluids. The bottom of the cell is assumed to be impermeable. We prove the existence of a unique classical solution if the initial data is near a constant, identify the equilibria of the flow, and study their stability.
KW - Hele-Shaw flow
KW - Non Newtonian fluid
KW - Nonlinear parabolic equation
KW - Oldroyd-B fluid
KW - Power law fluid
KW - Quasi-linear elliptic equation
UR - http://www.scopus.com/inward/record.url?scp=70350102573&partnerID=8YFLogxK
U2 - 10.1137/070707671
DO - 10.1137/070707671
M3 - Article
AN - SCOPUS:70350102573
VL - 40
SP - 1992
EP - 2006
JO - SIAM Journal on Mathematical Analysis
JF - SIAM Journal on Mathematical Analysis
SN - 0036-1410
IS - 5
ER -