Details
Originalsprache | Englisch |
---|---|
Fachzeitschrift | Experimental physiology |
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 9 Feb. 2025 |
Abstract
During exercise stress, heart rate (HR) increases to support cardiac output, which also reduces ventricular filling time. Although echocardiography is widely used to assess cardiac function, studies display conflicting data on the dynamic changes in the healthy trained and untrained heart during rest and acute exercise stress. To address these discrepancies, we tested a new echocardiography exercise protocol on two groups with significant differences in cardiorespiratory fitness. Ten untrained individuals with maximal oxygen uptake of 38 ± 8 ml/kg/min and 10 endurance-trained athletes matched for body surface area but with higher maximal oxygen uptake (71 ± 5 ml/kg/min) were evaluated at rest, during semi-recumbent cycling at 25 and 75 W and at a relative workload intensity eliciting a HR of 140 beats/min (HR140). Stroke volume was 36% higher in the trained at rest, and this difference increased during exercise to 42% at 25 W, 46% at 75 W and 63% at HR140 (all P < 0.05). In contrast, no group differences were found in markers of myocardial function (ventricular contraction and relaxation velocities) or other traditional echocardiographic measures of ventricular function at rest or exercise for a given HR. However, while similar at rest, diastolic and systolic function provided limited insight into differences between less fit and highly fit individuals. The new exercise echocardiography protocol improves the ability to uncover differences in dynamic changes in diastolic filling capacity that explain the previously reported higher end-diastolic compliance in endurance-trained athletes.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Physiologie
- Pflege (insg.)
- Ernährung und Diätetik
- Medizin (insg.)
- Physiologie (medizinische)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Experimental physiology, 09.02.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Exercise echocardiography for improved assessment of diastolic filling dynamics
AU - Fischer, Mads
AU - Bonne, Thomas
AU - Klaris, Magnus Bak
AU - Lenzing, Emil
AU - Stöhr, Eric J
AU - Bejder, Jacob
AU - Lundby, Carsten
AU - Nordsborg, Nikolai B
AU - Nybo, Lars
N1 - © 2025 The Author(s). Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
PY - 2025/2/9
Y1 - 2025/2/9
N2 - During exercise stress, heart rate (HR) increases to support cardiac output, which also reduces ventricular filling time. Although echocardiography is widely used to assess cardiac function, studies display conflicting data on the dynamic changes in the healthy trained and untrained heart during rest and acute exercise stress. To address these discrepancies, we tested a new echocardiography exercise protocol on two groups with significant differences in cardiorespiratory fitness. Ten untrained individuals with maximal oxygen uptake of 38 ± 8 ml/kg/min and 10 endurance-trained athletes matched for body surface area but with higher maximal oxygen uptake (71 ± 5 ml/kg/min) were evaluated at rest, during semi-recumbent cycling at 25 and 75 W and at a relative workload intensity eliciting a HR of 140 beats/min (HR140). Stroke volume was 36% higher in the trained at rest, and this difference increased during exercise to 42% at 25 W, 46% at 75 W and 63% at HR140 (all P < 0.05). In contrast, no group differences were found in markers of myocardial function (ventricular contraction and relaxation velocities) or other traditional echocardiographic measures of ventricular function at rest or exercise for a given HR. However, while similar at rest, diastolic and systolic function provided limited insight into differences between less fit and highly fit individuals. The new exercise echocardiography protocol improves the ability to uncover differences in dynamic changes in diastolic filling capacity that explain the previously reported higher end-diastolic compliance in endurance-trained athletes.
AB - During exercise stress, heart rate (HR) increases to support cardiac output, which also reduces ventricular filling time. Although echocardiography is widely used to assess cardiac function, studies display conflicting data on the dynamic changes in the healthy trained and untrained heart during rest and acute exercise stress. To address these discrepancies, we tested a new echocardiography exercise protocol on two groups with significant differences in cardiorespiratory fitness. Ten untrained individuals with maximal oxygen uptake of 38 ± 8 ml/kg/min and 10 endurance-trained athletes matched for body surface area but with higher maximal oxygen uptake (71 ± 5 ml/kg/min) were evaluated at rest, during semi-recumbent cycling at 25 and 75 W and at a relative workload intensity eliciting a HR of 140 beats/min (HR140). Stroke volume was 36% higher in the trained at rest, and this difference increased during exercise to 42% at 25 W, 46% at 75 W and 63% at HR140 (all P < 0.05). In contrast, no group differences were found in markers of myocardial function (ventricular contraction and relaxation velocities) or other traditional echocardiographic measures of ventricular function at rest or exercise for a given HR. However, while similar at rest, diastolic and systolic function provided limited insight into differences between less fit and highly fit individuals. The new exercise echocardiography protocol improves the ability to uncover differences in dynamic changes in diastolic filling capacity that explain the previously reported higher end-diastolic compliance in endurance-trained athletes.
KW - cardiorespiratory fitness
KW - echocardiography
KW - endurance
KW - exercise
KW - maximal oxygen uptake
KW - myocardial function
KW - stroke volume
UR - http://www.scopus.com/inward/record.url?scp=85217430236&partnerID=8YFLogxK
U2 - 10.1113/EP092177
DO - 10.1113/EP092177
M3 - Article
C2 - 39925003
JO - Experimental physiology
JF - Experimental physiology
SN - 0958-0670
ER -