Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1443-1468 |
Seitenumfang | 26 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 355 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2013 |
Abstract
We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 355, Nr. 4, 01.01.2013, S. 1443-1468.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Evolution of spacelike surfaces in AdS3 by their Lagrangian angle
AU - Smoczyk, Knut
PY - 2013/1/1
Y1 - 2013/1/1
N2 - We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.
AB - We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.
UR - http://www.scopus.com/inward/record.url?scp=84875627617&partnerID=8YFLogxK
U2 - 10.1007/s00208-012-0827-8
DO - 10.1007/s00208-012-0827-8
M3 - Article
AN - SCOPUS:84875627617
VL - 355
SP - 1443
EP - 1468
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 4
ER -