Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1118-1127 |
Seitenumfang | 10 |
Fachzeitschrift | Molecular Plant-Microbe Interactions |
Jahrgang | 21 |
Ausgabenummer | 8 |
Publikationsstatus | Veröffentlicht - 1 Aug. 2008 |
Extern publiziert | Ja |
Abstract
Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Physiologie
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Molecular Plant-Microbe Interactions, Jahrgang 21, Nr. 8, 01.08.2008, S. 1118-1127.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1
AU - Combier, Jean Philippe
AU - Küster, Helge
AU - Journet, Etienne Pascal
AU - Hohnjec, Natalija
AU - Gamas, Pascal
AU - Niebel, Andreas
PY - 2008/8/1
Y1 - 2008/8/1
N2 - Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
AB - Nod factors are key bacterial signaling molecules regulating the symbiotic interaction between bacteria known as rhizobia and leguminous plants. Studying plant host genes whose expression is affected by Nod factors has given insights into early symbiotic signaling and development. Here, we used a double supernodulating mutant line that shows increased sensitivity to Nod factors to study the Nod factor-regulated transcriptome. Using microarrays containing more than 16,000 70-mer oligonucleotide probes, we identified 643 Nod-factor-regulated genes, including 225 new Nod-factor-upregulated genes encoding many potential regulators. Among the genes found to be Nod factor upregulated, we identified and characterized MtRALFL1 and MtDVL1, which code for two small putative peptide regulators of 135 and 53 amino acids, respectively. Expression analysis confirmed that these genes are upregulated during initial phases of nodulation. Overexpression of MtRALFL1 and MtDVL1 in Medicago truncatula roots resulted in a marked reduction in the number of nodules formed and in a strong increase in the number of aborted infection threads. In addition, abnormal nodule development was observed when MtRALFL1 was overexpressed. This work provides evidence for the involvement of new putative small-peptide regulators during nodulation.
KW - Rhizobial infection
UR - http://www.scopus.com/inward/record.url?scp=49449106557&partnerID=8YFLogxK
U2 - 10.1094/MPMI-21-8-1118
DO - 10.1094/MPMI-21-8-1118
M3 - Article
C2 - 18616408
AN - SCOPUS:49449106557
VL - 21
SP - 1118
EP - 1127
JO - Molecular Plant-Microbe Interactions
JF - Molecular Plant-Microbe Interactions
SN - 0894-0282
IS - 8
ER -