Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 21 |
Fachzeitschrift | TOXINS |
Jahrgang | 15 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 28 Dez. 2022 |
Abstract
The high incidence of aflatoxins (AFs) in chocolates suggests the necessity to create a practical and cost-effective processing strategy for eliminating mycotoxins. The present study aimed to assess the adsorption abilities of activated charcoal (A. charcoal), yeast ( Saccharomyces cerevisiae), and the probiotic Lactobacillus rhamnosus as AFs adsorbents in three forms-sole, di- and tri-mix-in phosphate-buffered saline (PBS) through an in vitro approach, simulated to mimic the conditions present in the gastrointestinal tract (GIT) based on pH, time and AFs concentration. In addition, the novel fortification of chocolate with A. charcoal, probiotic, and yeast (tri-mix adsorbents) was evaluated for its effects on the sensory properties. Using HPLC, 60 samples of dark, milk, bitter, couverture, powder, and wafer chocolates were examined for the presence of AFs. Results showed that all the examined samples contained AFs, with maximum concentrations of 2.32, 1.81, and 1.66 µg/kg for powder, milk, and dark chocolates, respectively. The combined treatment demonstrated the highest adsorption efficiency (96.8%) among all tested compounds. Scanning electron microscope (SEM) analysis revealed the tested adsorbents to be effective AF-binding agents. Moreover, the novel combination of tri-mix fortified chocolate had a minor cytotoxicity impact on the adsorptive abilities, with the highest binding at pH 6.8 for 4 h, in addition to inducing an insignificant effect on the sensory attributes of dark chocolate. Tri-mix is thus recommended in the manufacturing of dark chocolate in order to enhance the safety of the newly developed product.
ASJC Scopus Sachgebiete
- Umweltwissenschaften (insg.)
- Gesundheit, Toxikologie und Mutagenese
- Pharmakologie, Toxikologie und Pharmazie (insg.)
- Toxikologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: TOXINS, Jahrgang 15, Nr. 1, 21, 28.12.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Evaluation of the Effectiveness of Charcoal, Lactobacillus rhamnosus, and Saccharomyces cerevisiae as Aflatoxin Adsorbents in Chocolate.
AU - Hamad, Gamal M
AU - Amer, Amr
AU - El-Nogoumy, Baher
AU - Ibrahim, Mohamed
AU - Hassan, Sabria
AU - Siddiqui, Shahida Anusha
AU - El-Gazzar, Ahmed M
AU - Khalifa, Eman
AU - Omar, Sabrien A
AU - Abd-Elmohsen Abou-Alella, Sarah
AU - Ibrahim, Salam A
AU - Esatbeyoglu, Tuba
AU - Mehany, Taha
N1 - The open access publication of this article was supported by the Open Access Fund of Leibniz Universität Hannover. This study received no external fundings.
PY - 2022/12/28
Y1 - 2022/12/28
N2 - The high incidence of aflatoxins (AFs) in chocolates suggests the necessity to create a practical and cost-effective processing strategy for eliminating mycotoxins. The present study aimed to assess the adsorption abilities of activated charcoal (A. charcoal), yeast ( Saccharomyces cerevisiae), and the probiotic Lactobacillus rhamnosus as AFs adsorbents in three forms-sole, di- and tri-mix-in phosphate-buffered saline (PBS) through an in vitro approach, simulated to mimic the conditions present in the gastrointestinal tract (GIT) based on pH, time and AFs concentration. In addition, the novel fortification of chocolate with A. charcoal, probiotic, and yeast (tri-mix adsorbents) was evaluated for its effects on the sensory properties. Using HPLC, 60 samples of dark, milk, bitter, couverture, powder, and wafer chocolates were examined for the presence of AFs. Results showed that all the examined samples contained AFs, with maximum concentrations of 2.32, 1.81, and 1.66 µg/kg for powder, milk, and dark chocolates, respectively. The combined treatment demonstrated the highest adsorption efficiency (96.8%) among all tested compounds. Scanning electron microscope (SEM) analysis revealed the tested adsorbents to be effective AF-binding agents. Moreover, the novel combination of tri-mix fortified chocolate had a minor cytotoxicity impact on the adsorptive abilities, with the highest binding at pH 6.8 for 4 h, in addition to inducing an insignificant effect on the sensory attributes of dark chocolate. Tri-mix is thus recommended in the manufacturing of dark chocolate in order to enhance the safety of the newly developed product.
AB - The high incidence of aflatoxins (AFs) in chocolates suggests the necessity to create a practical and cost-effective processing strategy for eliminating mycotoxins. The present study aimed to assess the adsorption abilities of activated charcoal (A. charcoal), yeast ( Saccharomyces cerevisiae), and the probiotic Lactobacillus rhamnosus as AFs adsorbents in three forms-sole, di- and tri-mix-in phosphate-buffered saline (PBS) through an in vitro approach, simulated to mimic the conditions present in the gastrointestinal tract (GIT) based on pH, time and AFs concentration. In addition, the novel fortification of chocolate with A. charcoal, probiotic, and yeast (tri-mix adsorbents) was evaluated for its effects on the sensory properties. Using HPLC, 60 samples of dark, milk, bitter, couverture, powder, and wafer chocolates were examined for the presence of AFs. Results showed that all the examined samples contained AFs, with maximum concentrations of 2.32, 1.81, and 1.66 µg/kg for powder, milk, and dark chocolates, respectively. The combined treatment demonstrated the highest adsorption efficiency (96.8%) among all tested compounds. Scanning electron microscope (SEM) analysis revealed the tested adsorbents to be effective AF-binding agents. Moreover, the novel combination of tri-mix fortified chocolate had a minor cytotoxicity impact on the adsorptive abilities, with the highest binding at pH 6.8 for 4 h, in addition to inducing an insignificant effect on the sensory attributes of dark chocolate. Tri-mix is thus recommended in the manufacturing of dark chocolate in order to enhance the safety of the newly developed product.
KW - aflatoxin
KW - biocontrol
KW - chocolate contamination
KW - chocolate safety
KW - gastrointestinal tract
KW - Lactobacillus rhamnosus
KW - natural adsorbent
KW - probiotic
KW - Saccharomyces cerevisiae
UR - http://www.scopus.com/inward/record.url?scp=85146766995&partnerID=8YFLogxK
U2 - 10.3390/toxins15010021
DO - 10.3390/toxins15010021
M3 - Article
C2 - 36668841
VL - 15
JO - TOXINS
JF - TOXINS
SN - 2072-6651
IS - 1
M1 - 21
ER -