Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 015112 |
Fachzeitschrift | Measurement science and technology |
Jahrgang | 34 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Extern publiziert | Ja |
Abstract
Because of its mobility and ability to investigate exposed surfaces, single-sided (SiS) nuclear magnetic resonance (NMR) technology enables new application fields in geosciences. To test and assess its corresponding potential, we compare longitudinal (T 1) and transverse (T 2) data measured by SiS NMR with those of conventional geoscientific laboratory NMR. We use reference sandstone samples covering a broad range of pore sizes. Our study demonstrates that the lower signal-to-noise ratio of SiS NMR data generally tends to slightly overestimated widths of relaxation time distributions and consequently pore size distributions. While SiS and conventional NMR produce very similar T 1 relaxation data, unbiased SiS NMR results for T 2 measurements can only be expected for fine material, i.e. clayey or silty sediments and soils with main relaxation times below 0.05s . This limit is given by the diffusion relaxation rate due to the gradient in the primary magnetic field associated with the SiS NMR. Above that limit, i.e. for coarse material, the relaxation data is strongly attenuated. If considering the diffusion relaxation time of 0.2 s in the numerical data inversion process, the information content >0.2s is blurred over a range larger than that of conventional NMR. However, our results show that principle range and magnitudes of the relaxation time distributions are reconstructed to some extent. Regarding these findings, SiS NMR can be helpful to solve geoscientific issues, e.g. to assess the hydro-mechanical properties of the walls of underground facilities or to provide local soil moisture data sets for calibrating indirect remote techniques on the regional scale. The greatest opportunity provided by the SiS NMR technology is the acquisition of profile relaxation data for rocks with significant bedding structures at the μm scale. With this unique feature, SiS NMR can support the understanding and modeling of hydraulic and diffusional anisotropy behavior of sedimentary rocks.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Instrumentierung
- Ingenieurwesen (insg.)
- Ingenieurwesen (sonstige)
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Measurement science and technology, Jahrgang 34, Nr. 1, 015112, 01.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Evaluation of single-sided nuclear magnetic resonance technology for usage in geosciences
AU - Costabel, Stephan
AU - Hiller, Thomas
AU - Dlugosch, Raphael
AU - Kruschwitz, Sabine
AU - Müller-Petke, Mike
N1 - Publisher Copyright: © 2022 The Author(s). Published by IOP Publishing Ltd.
PY - 2023/1
Y1 - 2023/1
N2 - Because of its mobility and ability to investigate exposed surfaces, single-sided (SiS) nuclear magnetic resonance (NMR) technology enables new application fields in geosciences. To test and assess its corresponding potential, we compare longitudinal (T 1) and transverse (T 2) data measured by SiS NMR with those of conventional geoscientific laboratory NMR. We use reference sandstone samples covering a broad range of pore sizes. Our study demonstrates that the lower signal-to-noise ratio of SiS NMR data generally tends to slightly overestimated widths of relaxation time distributions and consequently pore size distributions. While SiS and conventional NMR produce very similar T 1 relaxation data, unbiased SiS NMR results for T 2 measurements can only be expected for fine material, i.e. clayey or silty sediments and soils with main relaxation times below 0.05s . This limit is given by the diffusion relaxation rate due to the gradient in the primary magnetic field associated with the SiS NMR. Above that limit, i.e. for coarse material, the relaxation data is strongly attenuated. If considering the diffusion relaxation time of 0.2 s in the numerical data inversion process, the information content >0.2s is blurred over a range larger than that of conventional NMR. However, our results show that principle range and magnitudes of the relaxation time distributions are reconstructed to some extent. Regarding these findings, SiS NMR can be helpful to solve geoscientific issues, e.g. to assess the hydro-mechanical properties of the walls of underground facilities or to provide local soil moisture data sets for calibrating indirect remote techniques on the regional scale. The greatest opportunity provided by the SiS NMR technology is the acquisition of profile relaxation data for rocks with significant bedding structures at the μm scale. With this unique feature, SiS NMR can support the understanding and modeling of hydraulic and diffusional anisotropy behavior of sedimentary rocks.
AB - Because of its mobility and ability to investigate exposed surfaces, single-sided (SiS) nuclear magnetic resonance (NMR) technology enables new application fields in geosciences. To test and assess its corresponding potential, we compare longitudinal (T 1) and transverse (T 2) data measured by SiS NMR with those of conventional geoscientific laboratory NMR. We use reference sandstone samples covering a broad range of pore sizes. Our study demonstrates that the lower signal-to-noise ratio of SiS NMR data generally tends to slightly overestimated widths of relaxation time distributions and consequently pore size distributions. While SiS and conventional NMR produce very similar T 1 relaxation data, unbiased SiS NMR results for T 2 measurements can only be expected for fine material, i.e. clayey or silty sediments and soils with main relaxation times below 0.05s . This limit is given by the diffusion relaxation rate due to the gradient in the primary magnetic field associated with the SiS NMR. Above that limit, i.e. for coarse material, the relaxation data is strongly attenuated. If considering the diffusion relaxation time of 0.2 s in the numerical data inversion process, the information content >0.2s is blurred over a range larger than that of conventional NMR. However, our results show that principle range and magnitudes of the relaxation time distributions are reconstructed to some extent. Regarding these findings, SiS NMR can be helpful to solve geoscientific issues, e.g. to assess the hydro-mechanical properties of the walls of underground facilities or to provide local soil moisture data sets for calibrating indirect remote techniques on the regional scale. The greatest opportunity provided by the SiS NMR technology is the acquisition of profile relaxation data for rocks with significant bedding structures at the μm scale. With this unique feature, SiS NMR can support the understanding and modeling of hydraulic and diffusional anisotropy behavior of sedimentary rocks.
KW - geosciences
KW - nuclear magnetic resonance
KW - single-sided NMR
UR - http://www.scopus.com/inward/record.url?scp=85141300512&partnerID=8YFLogxK
U2 - 10.1088/1361-6501/ac9800
DO - 10.1088/1361-6501/ac9800
M3 - Article
AN - SCOPUS:85141300512
VL - 34
JO - Measurement science and technology
JF - Measurement science and technology
SN - 0957-0233
IS - 1
M1 - 015112
ER -