Evaluation of a Novel Radar Based Scanning Method.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer6952075
Seitenumfang10
FachzeitschriftJ. Sensors
Jahrgang2016
PublikationsstatusVeröffentlicht - 22 Nov. 2015

Abstract

The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.

ASJC Scopus Sachgebiete

Zitieren

Evaluation of a Novel Radar Based Scanning Method. / Fritsche, Paul; Wagner, Bernardo.
in: J. Sensors, Jahrgang 2016, 6952075, 22.11.2015.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Fritsche P, Wagner B. Evaluation of a Novel Radar Based Scanning Method. J. Sensors. 2015 Nov 22;2016:6952075. doi: 10.1155/2016/6952075
Fritsche, Paul ; Wagner, Bernardo. / Evaluation of a Novel Radar Based Scanning Method. in: J. Sensors. 2015 ; Jahrgang 2016.
Download
@article{b912b191cca04c478ac96002b7a6f77d,
title = "Evaluation of a Novel Radar Based Scanning Method.",
abstract = "The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.",
author = "Paul Fritsche and Bernardo Wagner",
note = "DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.",
year = "2015",
month = nov,
day = "22",
doi = "10.1155/2016/6952075",
language = "English",
volume = "2016",

}

Download

TY - JOUR

T1 - Evaluation of a Novel Radar Based Scanning Method.

AU - Fritsche, Paul

AU - Wagner, Bernardo

N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.

PY - 2015/11/22

Y1 - 2015/11/22

N2 - The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.

AB - The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.

UR - http://www.scopus.com/inward/record.url?scp=84949255876&partnerID=8YFLogxK

U2 - 10.1155/2016/6952075

DO - 10.1155/2016/6952075

M3 - Article

VL - 2016

JO - J. Sensors

JF - J. Sensors

M1 - 6952075

ER -

Von denselben Autoren