Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 6952075 |
Seitenumfang | 10 |
Fachzeitschrift | J. Sensors |
Jahrgang | 2016 |
Publikationsstatus | Veröffentlicht - 22 Nov. 2015 |
Abstract
The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
- Physik und Astronomie (insg.)
- Instrumentierung
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: J. Sensors, Jahrgang 2016, 6952075, 22.11.2015.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Evaluation of a Novel Radar Based Scanning Method.
AU - Fritsche, Paul
AU - Wagner, Bernardo
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2015/11/22
Y1 - 2015/11/22
N2 - The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.
AB - The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with multiple sensors.
UR - http://www.scopus.com/inward/record.url?scp=84949255876&partnerID=8YFLogxK
U2 - 10.1155/2016/6952075
DO - 10.1155/2016/6952075
M3 - Article
VL - 2016
JO - J. Sensors
JF - J. Sensors
M1 - 6952075
ER -