ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • A. Utina
  • A. Amato
  • J. Arends
  • C. Arina
  • M. de Baar
  • M. Baars
  • P. Baer
  • N. van Bakel
  • W. Beaumont
  • A. Bertolini
  • M. van Beuzekom
  • S. Biersteker
  • A. Binetti
  • H. J.M. ter Brake
  • G. Bruno
  • J. Bryant
  • H. J. Bulten
  • L. Busch
  • P. Cebeci
  • C. Collette
  • S. Cooper
  • R. Cornelissen
  • P. Cuijpers
  • M. van Dael
  • S. Danilishin
  • D. Diksha
  • S. van Doesburg
  • M. Doets
  • R. Elsinga
  • V. Erends
  • J. van Erps
  • A. Freise
  • H. Frenaij
  • R. Garcia
  • M. Giesberts
  • S. Grohmann
  • H. Van Haevermaet
  • S. Heijnen
  • J. V. van Heijningen
  • E. Hennes
  • J. S. Hennig
  • M. Hennig
  • T. Hertog
  • S. Hild
  • H. D. Hoffmann
  • G. Hoft
  • M. Hopman
  • D. Hoyland
  • G. A. Iandolo
  • C. Ietswaard
  • R. Jamshidi
  • P. Jansweijer
  • A. Jones
  • P. Jones
  • N. Knust
  • G. Koekoek
  • X. Koroveshi
  • T. Kortekaas
  • A. N. Koushik
  • M. Kraan
  • M. van de Kraats
  • S. L. Kranzhoff
  • P. Kuijer
  • K. A. Kukkadapu
  • K. Lam
  • N. Letendre
  • P. Li
  • R. Limburg
  • F. Linde
  • J. P. Locquet
  • P. Loosen
  • H. Lueck
  • M. Martínez
  • A. Masserot
  • F. Meylahn
  • M. Molenaar
  • C. Mow-Lowry
  • J. Mundet
  • B. Munneke
  • L. van Nieuwland
  • E. Pacaud
  • D. Pascucci
  • S. Petit
  • Z. Van Ranst
  • G. Raskin
  • P. M. Recaman
  • N. van Remortel
  • L. Rolland
  • L. de Roo
  • E. Roose
  • J. C. Rosier
  • D. Ryckbosch
  • K. Schouteden
  • A. Sevrin
  • A. Sider
  • A. Singha
  • V. Spagnuolo
  • A. Stahl
  • J. Steinlechner
  • S. Steinlechner
  • B. Swinkels
  • N. Szilasi
  • M. Tacca
  • H. Thienpont
  • A. Vecchio
  • H. Verkooijen
  • C. H. Vermeer
  • M. Vervaeke
  • G. Visser
  • R. Walet
  • P. Werneke
  • C. Westhofen
  • B. Willke
  • A. Xhahi
  • T. Zhang

Organisationseinheiten

Externe Organisationen

  • Maastricht University
  • Nationaal instituut voor subatomaire fysica (Nikhef)
  • Vrije Universiteit Amsterdam
  • Katholische Universität Löwen (UCL)
  • Eindhoven University of Technology (TU/e)
  • Fraunhofer-Institut für Lasertechnik (ILT)
  • Universiteit Antwerpen (UAntwerpen)
  • KU Leuven
  • University of Twente
  • University of Birmingham
  • Karlsruher Institut für Technologie (KIT)
  • Precision Mechatronics Laboratory (PML)
  • Vrije Universiteit Brussel
  • Institució Catalana de Recerca i Estudis Avançats (ICREA)
  • University of Western Australia
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • Université Grenoble Alpes (UGA)
  • Universiteit Gent
  • Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer215008
FachzeitschriftClassical and Quantum Gravity
Jahrgang39
Ausgabenummer21
PublikationsstatusVeröffentlicht - 26 Sept. 2022

Abstract

The third-generation (3G) of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the 3G detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: (1) operating with 1550 nm laser light and at a temperature of 18 K and (2) operating at 2090 nm wavelength and a temperature of 123 K.

ASJC Scopus Sachgebiete

Zitieren

ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors. / Utina, A.; Amato, A.; Arends, J. et al.
in: Classical and Quantum Gravity, Jahrgang 39, Nr. 21, 215008, 26.09.2022.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Utina, A, Amato, A, Arends, J, Arina, C, de Baar, M, Baars, M, Baer, P, van Bakel, N, Beaumont, W, Bertolini, A, van Beuzekom, M, Biersteker, S, Binetti, A, ter Brake, HJM, Bruno, G, Bryant, J, Bulten, HJ, Busch, L, Cebeci, P, Collette, C, Cooper, S, Cornelissen, R, Cuijpers, P, van Dael, M, Danilishin, S, Diksha, D, van Doesburg, S, Doets, M, Elsinga, R, Erends, V, van Erps, J, Freise, A, Frenaij, H, Garcia, R, Giesberts, M, Grohmann, S, Van Haevermaet, H, Heijnen, S, van Heijningen, JV, Hennes, E, Hennig, JS, Hennig, M, Hertog, T, Hild, S, Hoffmann, HD, Hoft, G, Hopman, M, Hoyland, D, Iandolo, GA, Ietswaard, C, Jamshidi, R, Jansweijer, P, Jones, A, Jones, P, Knust, N, Koekoek, G, Koroveshi, X, Kortekaas, T, Koushik, AN, Kraan, M, van de Kraats, M, Kranzhoff, SL, Kuijer, P, Kukkadapu, KA, Lam, K, Letendre, N, Li, P, Limburg, R, Linde, F, Locquet, JP, Loosen, P, Lueck, H, Martínez, M, Masserot, A, Meylahn, F, Molenaar, M, Mow-Lowry, C, Mundet, J, Munneke, B, van Nieuwland, L, Pacaud, E, Pascucci, D, Petit, S, Van Ranst, Z, Raskin, G, Recaman, PM, van Remortel, N, Rolland, L, de Roo, L, Roose, E, Rosier, JC, Ryckbosch, D, Schouteden, K, Sevrin, A, Sider, A, Singha, A, Spagnuolo, V, Stahl, A, Steinlechner, J, Steinlechner, S, Swinkels, B, Szilasi, N, Tacca, M, Thienpont, H, Vecchio, A, Verkooijen, H, Vermeer, CH, Vervaeke, M, Visser, G, Walet, R, Werneke, P, Westhofen, C, Willke, B, Xhahi, A & Zhang, T 2022, 'ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors', Classical and Quantum Gravity, Jg. 39, Nr. 21, 215008. https://doi.org/10.48550/arXiv.2206.04905, https://doi.org/10.1088/1361-6382/ac8fdb
Utina, A., Amato, A., Arends, J., Arina, C., de Baar, M., Baars, M., Baer, P., van Bakel, N., Beaumont, W., Bertolini, A., van Beuzekom, M., Biersteker, S., Binetti, A., ter Brake, H. J. M., Bruno, G., Bryant, J., Bulten, H. J., Busch, L., Cebeci, P., ... Zhang, T. (2022). ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors. Classical and Quantum Gravity, 39(21), Artikel 215008. https://doi.org/10.48550/arXiv.2206.04905, https://doi.org/10.1088/1361-6382/ac8fdb
Utina A, Amato A, Arends J, Arina C, de Baar M, Baars M et al. ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors. Classical and Quantum Gravity. 2022 Sep 26;39(21):215008. doi: 10.48550/arXiv.2206.04905, 10.1088/1361-6382/ac8fdb
Utina, A. ; Amato, A. ; Arends, J. et al. / ETpathfinder : a cryogenic testbed for interferometric gravitational-wave detectors. in: Classical and Quantum Gravity. 2022 ; Jahrgang 39, Nr. 21.
Download
@article{6ffcf3b3659642b49c6de996066175cb,
title = "ETpathfinder: a cryogenic testbed for interferometric gravitational-wave detectors",
abstract = "The third-generation (3G) of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the 3G detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: (1) operating with 1550 nm laser light and at a temperature of 18 K and (2) operating at 2090 nm wavelength and a temperature of 123 K.",
keywords = "Cosmic Explorer, Einstein Telescope, ETpathfinder, gravitational-wave detectors, third generation of gravitational-wave detectors, Voyager",
author = "A. Utina and A. Amato and J. Arends and C. Arina and {de Baar}, M. and M. Baars and P. Baer and {van Bakel}, N. and W. Beaumont and A. Bertolini and {van Beuzekom}, M. and S. Biersteker and A. Binetti and {ter Brake}, {H. J.M.} and G. Bruno and J. Bryant and Bulten, {H. J.} and L. Busch and P. Cebeci and C. Collette and S. Cooper and R. Cornelissen and P. Cuijpers and {van Dael}, M. and S. Danilishin and D. Diksha and {van Doesburg}, S. and M. Doets and R. Elsinga and V. Erends and {van Erps}, J. and A. Freise and H. Frenaij and R. Garcia and M. Giesberts and S. Grohmann and {Van Haevermaet}, H. and S. Heijnen and {van Heijningen}, {J. V.} and E. Hennes and Hennig, {J. S.} and M. Hennig and T. Hertog and S. Hild and Hoffmann, {H. D.} and G. Hoft and M. Hopman and D. Hoyland and Iandolo, {G. A.} and C. Ietswaard and R. Jamshidi and P. Jansweijer and A. Jones and P. Jones and N. Knust and G. Koekoek and X. Koroveshi and T. Kortekaas and Koushik, {A. N.} and M. Kraan and {van de Kraats}, M. and Kranzhoff, {S. L.} and P. Kuijer and Kukkadapu, {K. A.} and K. Lam and N. Letendre and P. Li and R. Limburg and F. Linde and Locquet, {J. P.} and P. Loosen and H. Lueck and M. Mart{\'i}nez and A. Masserot and F. Meylahn and M. Molenaar and C. Mow-Lowry and J. Mundet and B. Munneke and {van Nieuwland}, L. and E. Pacaud and D. Pascucci and S. Petit and {Van Ranst}, Z. and G. Raskin and Recaman, {P. M.} and {van Remortel}, N. and L. Rolland and {de Roo}, L. and E. Roose and Rosier, {J. C.} and D. Ryckbosch and K. Schouteden and A. Sevrin and A. Sider and A. Singha and V. Spagnuolo and A. Stahl and J. Steinlechner and S. Steinlechner and B. Swinkels and N. Szilasi and M. Tacca and H. Thienpont and A. Vecchio and H. Verkooijen and Vermeer, {C. H.} and M. Vervaeke and G. Visser and R. Walet and P. Werneke and C. Westhofen and B. Willke and A. Xhahi and T. Zhang",
note = "Publisher Copyright: {\textcopyright} 2022 The Author(s). Published by IOP Publishing Ltd.",
year = "2022",
month = sep,
day = "26",
doi = "10.48550/arXiv.2206.04905",
language = "English",
volume = "39",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
publisher = "IOP Publishing Ltd.",
number = "21",

}

Download

TY - JOUR

T1 - ETpathfinder

T2 - a cryogenic testbed for interferometric gravitational-wave detectors

AU - Utina, A.

AU - Amato, A.

AU - Arends, J.

AU - Arina, C.

AU - de Baar, M.

AU - Baars, M.

AU - Baer, P.

AU - van Bakel, N.

AU - Beaumont, W.

AU - Bertolini, A.

AU - van Beuzekom, M.

AU - Biersteker, S.

AU - Binetti, A.

AU - ter Brake, H. J.M.

AU - Bruno, G.

AU - Bryant, J.

AU - Bulten, H. J.

AU - Busch, L.

AU - Cebeci, P.

AU - Collette, C.

AU - Cooper, S.

AU - Cornelissen, R.

AU - Cuijpers, P.

AU - van Dael, M.

AU - Danilishin, S.

AU - Diksha, D.

AU - van Doesburg, S.

AU - Doets, M.

AU - Elsinga, R.

AU - Erends, V.

AU - van Erps, J.

AU - Freise, A.

AU - Frenaij, H.

AU - Garcia, R.

AU - Giesberts, M.

AU - Grohmann, S.

AU - Van Haevermaet, H.

AU - Heijnen, S.

AU - van Heijningen, J. V.

AU - Hennes, E.

AU - Hennig, J. S.

AU - Hennig, M.

AU - Hertog, T.

AU - Hild, S.

AU - Hoffmann, H. D.

AU - Hoft, G.

AU - Hopman, M.

AU - Hoyland, D.

AU - Iandolo, G. A.

AU - Ietswaard, C.

AU - Jamshidi, R.

AU - Jansweijer, P.

AU - Jones, A.

AU - Jones, P.

AU - Knust, N.

AU - Koekoek, G.

AU - Koroveshi, X.

AU - Kortekaas, T.

AU - Koushik, A. N.

AU - Kraan, M.

AU - van de Kraats, M.

AU - Kranzhoff, S. L.

AU - Kuijer, P.

AU - Kukkadapu, K. A.

AU - Lam, K.

AU - Letendre, N.

AU - Li, P.

AU - Limburg, R.

AU - Linde, F.

AU - Locquet, J. P.

AU - Loosen, P.

AU - Lueck, H.

AU - Martínez, M.

AU - Masserot, A.

AU - Meylahn, F.

AU - Molenaar, M.

AU - Mow-Lowry, C.

AU - Mundet, J.

AU - Munneke, B.

AU - van Nieuwland, L.

AU - Pacaud, E.

AU - Pascucci, D.

AU - Petit, S.

AU - Van Ranst, Z.

AU - Raskin, G.

AU - Recaman, P. M.

AU - van Remortel, N.

AU - Rolland, L.

AU - de Roo, L.

AU - Roose, E.

AU - Rosier, J. C.

AU - Ryckbosch, D.

AU - Schouteden, K.

AU - Sevrin, A.

AU - Sider, A.

AU - Singha, A.

AU - Spagnuolo, V.

AU - Stahl, A.

AU - Steinlechner, J.

AU - Steinlechner, S.

AU - Swinkels, B.

AU - Szilasi, N.

AU - Tacca, M.

AU - Thienpont, H.

AU - Vecchio, A.

AU - Verkooijen, H.

AU - Vermeer, C. H.

AU - Vervaeke, M.

AU - Visser, G.

AU - Walet, R.

AU - Werneke, P.

AU - Westhofen, C.

AU - Willke, B.

AU - Xhahi, A.

AU - Zhang, T.

N1 - Publisher Copyright: © 2022 The Author(s). Published by IOP Publishing Ltd.

PY - 2022/9/26

Y1 - 2022/9/26

N2 - The third-generation (3G) of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the 3G detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: (1) operating with 1550 nm laser light and at a temperature of 18 K and (2) operating at 2090 nm wavelength and a temperature of 123 K.

AB - The third-generation (3G) of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the 3G detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: (1) operating with 1550 nm laser light and at a temperature of 18 K and (2) operating at 2090 nm wavelength and a temperature of 123 K.

KW - Cosmic Explorer

KW - Einstein Telescope

KW - ETpathfinder

KW - gravitational-wave detectors

KW - third generation of gravitational-wave detectors

KW - Voyager

UR - http://www.scopus.com/inward/record.url?scp=85139189769&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2206.04905

DO - 10.48550/arXiv.2206.04905

M3 - Article

AN - SCOPUS:85139189769

VL - 39

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 21

M1 - 215008

ER -