Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 653-660 |
Seitenumfang | 8 |
Fachzeitschrift | Publications of the Research Institute for Mathematical Sciences |
Jahrgang | 48 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2012 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Publications of the Research Institute for Mathematical Sciences, Jahrgang 48, Nr. 3, 2012, S. 653-660.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Equivariant Poincaré series and monodromy zeta functions of quasihomogeneous polynomials
AU - Ebeling, Wolfgang
AU - Gusein-Zade, Sabir M.
N1 - Copyright: Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - In earlier work, the authors described a relation between the Poincaré series and the classical monodromy zeta function corresponding to a quasihomogeneous polynomial. Here we formulate an equivariant version of this relation in terms of the Burnside rings of finite abelian groups and their analogues.
AB - In earlier work, the authors described a relation between the Poincaré series and the classical monodromy zeta function corresponding to a quasihomogeneous polynomial. Here we formulate an equivariant version of this relation in terms of the Burnside rings of finite abelian groups and their analogues.
KW - Burnside rings
KW - Group actions
KW - Poincaré Series
KW - Zeta functions
UR - http://www.scopus.com/inward/record.url?scp=84866859078&partnerID=8YFLogxK
U2 - 10.2977/PRIMS/85
DO - 10.2977/PRIMS/85
M3 - Article
AN - SCOPUS:84866859078
VL - 48
SP - 653
EP - 660
JO - Publications of the Research Institute for Mathematical Sciences
JF - Publications of the Research Institute for Mathematical Sciences
SN - 0034-5318
IS - 3
ER -