Equivariant indices of vector fields and 1-forms

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wolfgang Ebeling
  • Sabir M. Gusein-Zade

Organisationseinheiten

Externe Organisationen

  • Lomonosov Moscow State University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)286-301
Seitenumfang16
FachzeitschriftEuropean Journal of Mathematics
Jahrgang1
Ausgabenummer2
PublikationsstatusVeröffentlicht - 1 Juni 2015

Abstract

Equivariant versions of the radial index and of the GSV-index of a vector field or a 1-form on a singular variety with an action of a finite group are defined. They have values in the Burnside ring of the group. Poincaré–Hopf type theorems for them are proven and some of their properties are described.

ASJC Scopus Sachgebiete

Zitieren

Equivariant indices of vector fields and 1-forms. / Ebeling, Wolfgang; Gusein-Zade, Sabir M.
in: European Journal of Mathematics, Jahrgang 1, Nr. 2, 01.06.2015, S. 286-301.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ebeling, W & Gusein-Zade, SM 2015, 'Equivariant indices of vector fields and 1-forms', European Journal of Mathematics, Jg. 1, Nr. 2, S. 286-301. https://doi.org/10.1007/s40879-015-0036-6
Ebeling, W., & Gusein-Zade, S. M. (2015). Equivariant indices of vector fields and 1-forms. European Journal of Mathematics, 1(2), 286-301. https://doi.org/10.1007/s40879-015-0036-6
Ebeling W, Gusein-Zade SM. Equivariant indices of vector fields and 1-forms. European Journal of Mathematics. 2015 Jun 1;1(2):286-301. doi: 10.1007/s40879-015-0036-6
Ebeling, Wolfgang ; Gusein-Zade, Sabir M. / Equivariant indices of vector fields and 1-forms. in: European Journal of Mathematics. 2015 ; Jahrgang 1, Nr. 2. S. 286-301.
Download
@article{5fef3029317c4e9ca482c6dbb80950a6,
title = "Equivariant indices of vector fields and 1-forms",
abstract = "Equivariant versions of the radial index and of the GSV-index of a vector field or a 1-form on a singular variety with an action of a finite group are defined. They have values in the Burnside ring of the group. Poincar{\'e}–Hopf type theorems for them are proven and some of their properties are described.",
keywords = "1-Forms, Burnside ring, Finite group action, Index, Singularities, Vector fields",
author = "Wolfgang Ebeling and Gusein-Zade, {Sabir M.}",
note = "Funding information: Partially supported by the DFG (Mercator fellowship, Eb 102/8–1), the Russian government grant 11.G34.31.0005, RFBR–13-01-00755, and NSh–4850.2012.1.",
year = "2015",
month = jun,
day = "1",
doi = "10.1007/s40879-015-0036-6",
language = "English",
volume = "1",
pages = "286--301",
number = "2",

}

Download

TY - JOUR

T1 - Equivariant indices of vector fields and 1-forms

AU - Ebeling, Wolfgang

AU - Gusein-Zade, Sabir M.

N1 - Funding information: Partially supported by the DFG (Mercator fellowship, Eb 102/8–1), the Russian government grant 11.G34.31.0005, RFBR–13-01-00755, and NSh–4850.2012.1.

PY - 2015/6/1

Y1 - 2015/6/1

N2 - Equivariant versions of the radial index and of the GSV-index of a vector field or a 1-form on a singular variety with an action of a finite group are defined. They have values in the Burnside ring of the group. Poincaré–Hopf type theorems for them are proven and some of their properties are described.

AB - Equivariant versions of the radial index and of the GSV-index of a vector field or a 1-form on a singular variety with an action of a finite group are defined. They have values in the Burnside ring of the group. Poincaré–Hopf type theorems for them are proven and some of their properties are described.

KW - 1-Forms

KW - Burnside ring

KW - Finite group action

KW - Index

KW - Singularities

KW - Vector fields

UR - http://www.scopus.com/inward/record.url?scp=84958691176&partnerID=8YFLogxK

UR - https://arxiv.org/abs/1307.2054

U2 - 10.1007/s40879-015-0036-6

DO - 10.1007/s40879-015-0036-6

M3 - Article

AN - SCOPUS:84958691176

VL - 1

SP - 286

EP - 301

JO - European Journal of Mathematics

JF - European Journal of Mathematics

SN - 2199-675X

IS - 2

ER -