Details
Originalsprache | Englisch |
---|---|
Fachzeitschrift | Math. Z. |
Publikationsstatus | Veröffentlicht - 2014 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Math. Z., 2014.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Equivariant constrained Willmore tori in the 3-sphere
AU - Heller, Lynn
N1 - Funding information: The author is supported by the Sonderforschungsbereich Transregio 71.
PY - 2014
Y1 - 2014
N2 - In this paper we study equivariant constrained Willmore tori in the 3-sphere. These tori admit a 1-parameter group of M\"obius symmetries and are critical points of the Willmore energy under conformal variations. We show that the associated spectral curve of an equivariant torus is given by a double covering of \(\mathbb C\) and classify equivariant constrained Willmore tori by the genus g of their spectral curve. In this case the spectral genus satisfies \(g \leq 3.\)
AB - In this paper we study equivariant constrained Willmore tori in the 3-sphere. These tori admit a 1-parameter group of M\"obius symmetries and are critical points of the Willmore energy under conformal variations. We show that the associated spectral curve of an equivariant torus is given by a double covering of \(\mathbb C\) and classify equivariant constrained Willmore tori by the genus g of their spectral curve. In this case the spectral genus satisfies \(g \leq 3.\)
KW - math.DG
KW - 53C42, 53A30, 53A05, 37K15
U2 - 10.1007/s00209-014-1340-4
DO - 10.1007/s00209-014-1340-4
M3 - Article
JO - Math. Z.
JF - Math. Z.
SN - 1432-1823
ER -