Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 149-168 |
Seitenumfang | 20 |
Fachzeitschrift | Proceedings of the Edinburgh Mathematical Society |
Jahrgang | 58 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Feb. 2015 |
Abstract
We classify generically transitive actions of semi-direct products Ga ⋊ Gm on ℙ2. Motivated by the program to study the distribution of rational points on del Pezzo surfaces (Manin's conjecture), we determine all (possibly singular) del Pezzo surfaces that are equivariant compactifications of homogeneous spaces for semi-direct products Ga ⋊ Gm.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Proceedings of the Edinburgh Mathematical Society, Jahrgang 58, Nr. 1, 02.2015, S. 149-168.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Equivariant Compactifications of Two-Dimensional Algebraic Groups
AU - Derenthal, Ulrich
AU - Loughran, Daniel
N1 - Publisher Copyright: © 2014 The Edinburgh Mathematical Society. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2015/2
Y1 - 2015/2
N2 - We classify generically transitive actions of semi-direct products Ga ⋊ Gm on ℙ2. Motivated by the program to study the distribution of rational points on del Pezzo surfaces (Manin's conjecture), we determine all (possibly singular) del Pezzo surfaces that are equivariant compactifications of homogeneous spaces for semi-direct products Ga ⋊ Gm.
AB - We classify generically transitive actions of semi-direct products Ga ⋊ Gm on ℙ2. Motivated by the program to study the distribution of rational points on del Pezzo surfaces (Manin's conjecture), we determine all (possibly singular) del Pezzo surfaces that are equivariant compactifications of homogeneous spaces for semi-direct products Ga ⋊ Gm.
KW - algebraic groups
KW - del Pezzo surfaces
KW - equivariant compactifications
KW - Manin's conjectures
UR - http://www.scopus.com/inward/record.url?scp=84937868776&partnerID=8YFLogxK
U2 - 10.1017/S001309151400042X
DO - 10.1017/S001309151400042X
M3 - Article
AN - SCOPUS:84937868776
VL - 58
SP - 149
EP - 168
JO - Proceedings of the Edinburgh Mathematical Society
JF - Proceedings of the Edinburgh Mathematical Society
SN - 0013-0915
IS - 1
ER -