Equilibrium model for buried SiGe strained layers

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • A. Fischer
  • H. J. Osten
  • H. Richter

Externe Organisationen

  • Leibniz-Institut für innovative Mikroelektronik (IHP)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)869-873
Seitenumfang5
FachzeitschriftSolid-State Electronics
Jahrgang44
Ausgabenummer5
Frühes Online-Datum20 März 2000
PublikationsstatusVeröffentlicht - 1 Mai 2000
Extern publiziertJa

Abstract

The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.

ASJC Scopus Sachgebiete

Zitieren

Equilibrium model for buried SiGe strained layers. / Fischer, A.; Osten, H. J.; Richter, H.
in: Solid-State Electronics, Jahrgang 44, Nr. 5, 01.05.2000, S. 869-873.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Fischer A, Osten HJ, Richter H. Equilibrium model for buried SiGe strained layers. Solid-State Electronics. 2000 Mai 1;44(5):869-873. Epub 2000 Mär 20. doi: 10.1016/S0038-1101(99)00284-1
Fischer, A. ; Osten, H. J. ; Richter, H. / Equilibrium model for buried SiGe strained layers. in: Solid-State Electronics. 2000 ; Jahrgang 44, Nr. 5. S. 869-873.
Download
@article{13493e782d8848fab14871353ee9b062,
title = "Equilibrium model for buried SiGe strained layers",
abstract = "The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.",
author = "A. Fischer and Osten, {H. J.} and H. Richter",
year = "2000",
month = may,
day = "1",
doi = "10.1016/S0038-1101(99)00284-1",
language = "English",
volume = "44",
pages = "869--873",
journal = "Solid-State Electronics",
issn = "0038-1101",
publisher = "Elsevier Ltd.",
number = "5",

}

Download

TY - JOUR

T1 - Equilibrium model for buried SiGe strained layers

AU - Fischer, A.

AU - Osten, H. J.

AU - Richter, H.

PY - 2000/5/1

Y1 - 2000/5/1

N2 - The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.

AB - The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.

UR - http://www.scopus.com/inward/record.url?scp=0033885090&partnerID=8YFLogxK

U2 - 10.1016/S0038-1101(99)00284-1

DO - 10.1016/S0038-1101(99)00284-1

M3 - Article

AN - SCOPUS:0033885090

VL - 44

SP - 869

EP - 873

JO - Solid-State Electronics

JF - Solid-State Electronics

SN - 0038-1101

IS - 5

ER -