Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 869-873 |
Seitenumfang | 5 |
Fachzeitschrift | Solid-State Electronics |
Jahrgang | 44 |
Ausgabenummer | 5 |
Frühes Online-Datum | 20 März 2000 |
Publikationsstatus | Veröffentlicht - 1 Mai 2000 |
Extern publiziert | Ja |
Abstract
The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
- Werkstoffwissenschaften (insg.)
- Werkstoffchemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Solid-State Electronics, Jahrgang 44, Nr. 5, 01.05.2000, S. 869-873.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Equilibrium model for buried SiGe strained layers
AU - Fischer, A.
AU - Osten, H. J.
AU - Richter, H.
PY - 2000/5/1
Y1 - 2000/5/1
N2 - The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.
AB - The more refined model proposed here and its experimental verification provides a consistent picture of the complex mechanism for strain relief and defect propagation in Si/SiGe/Si heteroepitaxial stacks used in HBT technology. We have identified and quantified the relevant phenomena to predict the coherency and relaxation behavior of more complicated heteroepitaxial structures and can precisely predict the equilibrium critical thickness for a defect-free Si capped SiGe epilayer on Si substrate. The results allow us to optimize the device design for high x strained layer configurations and to determine the latitude in process margin.
UR - http://www.scopus.com/inward/record.url?scp=0033885090&partnerID=8YFLogxK
U2 - 10.1016/S0038-1101(99)00284-1
DO - 10.1016/S0038-1101(99)00284-1
M3 - Article
AN - SCOPUS:0033885090
VL - 44
SP - 869
EP - 873
JO - Solid-State Electronics
JF - Solid-State Electronics
SN - 0038-1101
IS - 5
ER -