Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Feng Hao
  • Stefan Schreieder

Organisationseinheiten

Externe Organisationen

  • KU Leuven
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)87-115
Seitenumfang29
FachzeitschriftJ REINE ANGEW MATH
Jahrgang2021
Ausgabenummer775
Frühes Online-Datum12 März 2021
PublikationsstatusVeröffentlicht - 1 Juni 2021

Abstract

We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number \(c_1^{n-2}c_2(X)=0\). This solves a problem of Kollár. Completing previous work of Kollár and Grassi, we also show that there is a universal constant \(\epsilon>0\) such that any minimal threefold satisfies either \(c_1c_2=0\) or \(-c_1c_2>\epsilon\). This settles completely a conjecture of Kollár.

ASJC Scopus Sachgebiete

Zitieren

Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case. / Hao, Feng; Schreieder, Stefan.
in: J REINE ANGEW MATH, Jahrgang 2021, Nr. 775, 01.06.2021, S. 87-115.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Hao F, Schreieder S. Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case. J REINE ANGEW MATH. 2021 Jun 1;2021(775):87-115. Epub 2021 Mär 12. doi: 10.1515/crelle-2021-0008
Hao, Feng ; Schreieder, Stefan. / Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case. in: J REINE ANGEW MATH. 2021 ; Jahrgang 2021, Nr. 775. S. 87-115.
Download
@article{7e807dac45e040489768448043eda885,
title = "Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case",
abstract = "We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number \(c_1^{n-2}c_2(X)=0\). This solves a problem of Koll{\'a}r. Completing previous work of Koll{\'a}r and Grassi, we also show that there is a universal constant \(\epsilon>0\) such that any minimal threefold satisfies either \(c_1c_2=0\) or \(-c_1c_2>\epsilon\). This settles completely a conjecture of Koll{\'a}r.",
keywords = "Bogomolov–Miyaoka–Yau inequality, good minimal models, elliptic fibre spaces, classification theory, threefolds",
author = "Feng Hao and Stefan Schreieder",
note = "Funding Information: Both authors are supported by the DFG grant ?Topologische Eigenschaften von Algebraischen Variet?ten? (project no. 416054549). The first author is also supported by grant G097819N of Nero Budur from the Research Foundation Flanders.",
year = "2021",
month = jun,
day = "1",
doi = "10.1515/crelle-2021-0008",
language = "English",
volume = "2021",
pages = "87--115",
journal = "J REINE ANGEW MATH",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",
number = "775",

}

Download

TY - JOUR

T1 - Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case

AU - Hao, Feng

AU - Schreieder, Stefan

N1 - Funding Information: Both authors are supported by the DFG grant ?Topologische Eigenschaften von Algebraischen Variet?ten? (project no. 416054549). The first author is also supported by grant G097819N of Nero Budur from the Research Foundation Flanders.

PY - 2021/6/1

Y1 - 2021/6/1

N2 - We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number \(c_1^{n-2}c_2(X)=0\). This solves a problem of Kollár. Completing previous work of Kollár and Grassi, we also show that there is a universal constant \(\epsilon>0\) such that any minimal threefold satisfies either \(c_1c_2=0\) or \(-c_1c_2>\epsilon\). This settles completely a conjecture of Kollár.

AB - We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number \(c_1^{n-2}c_2(X)=0\). This solves a problem of Kollár. Completing previous work of Kollár and Grassi, we also show that there is a universal constant \(\epsilon>0\) such that any minimal threefold satisfies either \(c_1c_2=0\) or \(-c_1c_2>\epsilon\). This settles completely a conjecture of Kollár.

KW - Bogomolov–Miyaoka–Yau inequality

KW - good minimal models

KW - elliptic fibre spaces

KW - classification theory

KW - threefolds

UR - http://www.scopus.com/inward/record.url?scp=85102597123&partnerID=8YFLogxK

U2 - 10.1515/crelle-2021-0008

DO - 10.1515/crelle-2021-0008

M3 - Article

VL - 2021

SP - 87

EP - 115

JO - J REINE ANGEW MATH

JF - J REINE ANGEW MATH

SN - 0075-4102

IS - 775

ER -