Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 87-115 |
Seitenumfang | 29 |
Fachzeitschrift | J REINE ANGEW MATH |
Jahrgang | 2021 |
Ausgabenummer | 775 |
Frühes Online-Datum | 12 März 2021 |
Publikationsstatus | Veröffentlicht - 1 Juni 2021 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Angewandte Mathematik
- Mathematik (insg.)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: J REINE ANGEW MATH, Jahrgang 2021, Nr. 775, 01.06.2021, S. 87-115.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Equality in the Bogomolov–Miyaoka–Yau inequality in the non-general type case
AU - Hao, Feng
AU - Schreieder, Stefan
N1 - Funding Information: Both authors are supported by the DFG grant ?Topologische Eigenschaften von Algebraischen Variet?ten? (project no. 416054549). The first author is also supported by grant G097819N of Nero Budur from the Research Foundation Flanders.
PY - 2021/6/1
Y1 - 2021/6/1
N2 - We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number \(c_1^{n-2}c_2(X)=0\). This solves a problem of Kollár. Completing previous work of Kollár and Grassi, we also show that there is a universal constant \(\epsilon>0\) such that any minimal threefold satisfies either \(c_1c_2=0\) or \(-c_1c_2>\epsilon\). This settles completely a conjecture of Kollár.
AB - We classify all minimal models X of dimension n, Kodaira dimension n-1 and with vanishing Chern number \(c_1^{n-2}c_2(X)=0\). This solves a problem of Kollár. Completing previous work of Kollár and Grassi, we also show that there is a universal constant \(\epsilon>0\) such that any minimal threefold satisfies either \(c_1c_2=0\) or \(-c_1c_2>\epsilon\). This settles completely a conjecture of Kollár.
KW - Bogomolov–Miyaoka–Yau inequality
KW - good minimal models
KW - elliptic fibre spaces
KW - classification theory
KW - threefolds
UR - http://www.scopus.com/inward/record.url?scp=85102597123&partnerID=8YFLogxK
U2 - 10.1515/crelle-2021-0008
DO - 10.1515/crelle-2021-0008
M3 - Article
VL - 2021
SP - 87
EP - 115
JO - J REINE ANGEW MATH
JF - J REINE ANGEW MATH
SN - 0075-4102
IS - 775
ER -