Details
Originalsprache | undefiniert/unbekannt |
---|---|
Seiten (von - bis) | 259-277 |
Seitenumfang | 19 |
Fachzeitschrift | Ann. Inst. H. Poincaré Phys. Théor. |
Jahrgang | 57 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 1992 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Ann. Inst. H. Poincaré Phys. Théor., Jahrgang 57, Nr. 3, 1992, S. 259-277.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Entropy estimates for finitely correlated states
AU - Fannes, M.
AU - Nachtergaele, B.
AU - Werner, R. F.
PY - 1992
Y1 - 1992
N2 - We study in this paper the Renyi entropy densities of integer order for the class of finitely correlated states on a quantum spin chain, and obtain in this way explicit lower bounds for the usual entropy density. We apply this technique to obtain good bounds on the entropy density of a certain state on a spin-3/2 chain. This state is a ground state of a translation invariant nearest neighbour SU(2)-invariant interaction, which is thus shown to posses a residual entropy as T . Breaking the translation symmetry by adding a small SU(2)-invariant interaction of period two removes the ground state degeneracy, and produces a non-zero spectral gap above the ground state.
AB - We study in this paper the Renyi entropy densities of integer order for the class of finitely correlated states on a quantum spin chain, and obtain in this way explicit lower bounds for the usual entropy density. We apply this technique to obtain good bounds on the entropy density of a certain state on a spin-3/2 chain. This state is a ground state of a translation invariant nearest neighbour SU(2)-invariant interaction, which is thus shown to posses a residual entropy as T . Breaking the translation symmetry by adding a small SU(2)-invariant interaction of period two removes the ground state degeneracy, and produces a non-zero spectral gap above the ground state.
M3 - Article
VL - 57
SP - 259
EP - 277
JO - Ann. Inst. H. Poincaré Phys. Théor.
JF - Ann. Inst. H. Poincaré Phys. Théor.
IS - 3
ER -