Entanglement of formation for symmetric Gaussian states

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)107901
Seitenumfang1
FachzeitschriftPhys. Rev. Lett.
Jahrgang91
Ausgabenummer10
PublikationsstatusVeröffentlicht - 2003

Abstract

We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen–like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.

Zitieren

Entanglement of formation for symmetric Gaussian states. / Giedke, G; Wolf, M. M.; Krüger, Ole et al.
in: Phys. Rev. Lett., Jahrgang 91, Nr. 10, 2003, S. 107901.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Giedke G, Wolf MM, Krüger O, Werner RF, Cirac JI. Entanglement of formation for symmetric Gaussian states. Phys. Rev. Lett. 2003;91(10):107901. doi: 10.1103/PhysRevLett.91.107901
Giedke, G ; Wolf, M. M. ; Krüger, Ole et al. / Entanglement of formation for symmetric Gaussian states. in: Phys. Rev. Lett. 2003 ; Jahrgang 91, Nr. 10. S. 107901.
Download
@article{e8a7c18e9711437e88895ba32cee9bd8,
title = "Entanglement of formation for symmetric Gaussian states",
abstract = "We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen–like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.",
author = "G Giedke and Wolf, {M. M.} and Ole Kr{\"u}ger and Werner, {R. F.} and Cirac, {J. I.}",
year = "2003",
doi = "10.1103/PhysRevLett.91.107901",
language = "English",
volume = "91",
pages = "107901",
journal = "Phys. Rev. Lett.",
publisher = "American Physical Society",
number = "10",

}

Download

TY - JOUR

T1 - Entanglement of formation for symmetric Gaussian states

AU - Giedke, G

AU - Wolf, M. M.

AU - Krüger, Ole

AU - Werner, R. F.

AU - Cirac, J. I.

PY - 2003

Y1 - 2003

N2 - We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen–like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.

AB - We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen–like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.

U2 - 10.1103/PhysRevLett.91.107901

DO - 10.1103/PhysRevLett.91.107901

M3 - Article

VL - 91

SP - 107901

JO - Phys. Rev. Lett.

JF - Phys. Rev. Lett.

IS - 10

ER -

Von denselben Autoren