Entangled momentum modes for atom interferometry

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Fabian Anders
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
  • Carsten Klempt, Betreuer*in
Datum der Verleihung des Grades15 Juni 2022
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2022

Abstract

Verschränkte Zustände wurden in vielen atomaren Systemen erzeugt und finden ein aussichtsreiche Anwendung in der verschränkungsgestützten Metrologie. Hier wurden verschränkte Spinzustände erfolgreich in Interferometern eingesetzt, mit denen Magnetfelder und Frequenzen mit erhöhter Empfindlichkeit gemessen werden können. Im Gegensatz dazu werden Atominterferometer zur Messung von Beschleunigungen und Gravitationsfeldern in externen Freiheitsgraden betrieben und spannen eine Fläche in der Raumzeit auf. Um hier verschränkte Zustände nutzen zu können, muss die Verschränkung zwischen Impulszuständen mit geeigneter räumlicher Ausdehnung und Geschwindigkeitsbreite erzeugt werden. In dieser Arbeit wird eine Quelle für impulsverschränkte Atome vorgestellt, die mit heutigen Atominterferometern kompatibel ist. Unter Verwendung einer quasi-adiabatischen Rampe durch einen Quantenphasenübergang werden hochverschränkte Zwillings-Fock- Zustände im inneren Spin-Freiheitsgrad eines 87Rb Bose-Einstein- Kondensats erzeugt. Die Verschränkung wird durch eine stimulierte Raman-Kopplung erfolgreich in den Impulsraum übertragen und durch die direkte Messung eines Verschränkungskriteriums verifiziert. Die beobachtete Modenqualität und die Restexpansion zeigen, dass sich diese verschränkte Quelle gut für die sukzessive Anwendung in Atominterferometern eignet und einen Weg zur Gravimetrie jenseits des Standard-Quantenlimits eröffnet. Darüber hinaus könnten die aufgezeigten Techniken zur Durchführung eines skalierbaren atomaren Bell Tests eingesetzt werden. Langfristig könnten ähnliche verschränkte Quellen insbesondere die Leistung von Gravitationsgradiometern, Tests des Einsteinschen Äquivalenzprinzips und zukünftigen atomaren Gravitationswellendetektoren verbessern.

Zitieren

Entangled momentum modes for atom interferometry. / Anders, Fabian.
Hannover, 2022. 113 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Anders, F 2022, 'Entangled momentum modes for atom interferometry', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/12802
Anders, F. (2022). Entangled momentum modes for atom interferometry. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/12802
Anders F. Entangled momentum modes for atom interferometry. Hannover, 2022. 113 S. doi: 10.15488/12802
Anders, Fabian. / Entangled momentum modes for atom interferometry. Hannover, 2022. 113 S.
Download
@phdthesis{7cf163308c124b7f986234432f8b6d5e,
title = "Entangled momentum modes for atom interferometry",
abstract = "Entangled ensembles have been created in versatile atomic systems and find a promising application in entanglement-enhanced metrology. Here, entangled spin-states have been successfully applied within interferometers that allow to measure magnetic fields and frequencies with enhanced sensitivities. In contrast, atom interferometers for the measurement of inertial forces and gravitational fields are operated in external degrees of freedom and span an area in space-time. To make use of entangled states here, the entanglement has to be generated among momentum modes with suitable spatial extent and velocity width. In this thesis, a source of momentum-entangled atoms that is compatible with present-day light-pulse atom interferometers is presented. Utilising a quasi-adiabatic ramp through a quantum phase transition, highly-entangled twin-Fock states are created in the internal spindegree of freedom of a 87Rb Bose-Einstein condensate. Hereon, the entanglement is successfully transferred to distinct momentum-modes by a stimulated Raman coupling and verified by the direct measurement of an entanglement criterion. The observed mode quality and the residual expansion demonstrate that this entangled source is wellsuited to the successive application in light-pulse atom interferometers and opens up a path to gravimetry beyond the standard quantum limit. Furthermore could the demonstrated techniques be employed to realise a scalable atomic Bell test. In the long run, similar entangled sources could specifically enhance the performance of gravity gradiometers, tests of the Einstein Equivalence Principle and future atomic gravitational wave detectors.",
author = "Fabian Anders",
note = "Doctoral thesis",
year = "2022",
doi = "10.15488/12802",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Entangled momentum modes for atom interferometry

AU - Anders, Fabian

N1 - Doctoral thesis

PY - 2022

Y1 - 2022

N2 - Entangled ensembles have been created in versatile atomic systems and find a promising application in entanglement-enhanced metrology. Here, entangled spin-states have been successfully applied within interferometers that allow to measure magnetic fields and frequencies with enhanced sensitivities. In contrast, atom interferometers for the measurement of inertial forces and gravitational fields are operated in external degrees of freedom and span an area in space-time. To make use of entangled states here, the entanglement has to be generated among momentum modes with suitable spatial extent and velocity width. In this thesis, a source of momentum-entangled atoms that is compatible with present-day light-pulse atom interferometers is presented. Utilising a quasi-adiabatic ramp through a quantum phase transition, highly-entangled twin-Fock states are created in the internal spindegree of freedom of a 87Rb Bose-Einstein condensate. Hereon, the entanglement is successfully transferred to distinct momentum-modes by a stimulated Raman coupling and verified by the direct measurement of an entanglement criterion. The observed mode quality and the residual expansion demonstrate that this entangled source is wellsuited to the successive application in light-pulse atom interferometers and opens up a path to gravimetry beyond the standard quantum limit. Furthermore could the demonstrated techniques be employed to realise a scalable atomic Bell test. In the long run, similar entangled sources could specifically enhance the performance of gravity gradiometers, tests of the Einstein Equivalence Principle and future atomic gravitational wave detectors.

AB - Entangled ensembles have been created in versatile atomic systems and find a promising application in entanglement-enhanced metrology. Here, entangled spin-states have been successfully applied within interferometers that allow to measure magnetic fields and frequencies with enhanced sensitivities. In contrast, atom interferometers for the measurement of inertial forces and gravitational fields are operated in external degrees of freedom and span an area in space-time. To make use of entangled states here, the entanglement has to be generated among momentum modes with suitable spatial extent and velocity width. In this thesis, a source of momentum-entangled atoms that is compatible with present-day light-pulse atom interferometers is presented. Utilising a quasi-adiabatic ramp through a quantum phase transition, highly-entangled twin-Fock states are created in the internal spindegree of freedom of a 87Rb Bose-Einstein condensate. Hereon, the entanglement is successfully transferred to distinct momentum-modes by a stimulated Raman coupling and verified by the direct measurement of an entanglement criterion. The observed mode quality and the residual expansion demonstrate that this entangled source is wellsuited to the successive application in light-pulse atom interferometers and opens up a path to gravimetry beyond the standard quantum limit. Furthermore could the demonstrated techniques be employed to realise a scalable atomic Bell test. In the long run, similar entangled sources could specifically enhance the performance of gravity gradiometers, tests of the Einstein Equivalence Principle and future atomic gravitational wave detectors.

U2 - 10.15488/12802

DO - 10.15488/12802

M3 - Doctoral thesis

CY - Hannover

ER -