Enriques surfaces: Brauer groups and kummer structures

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Università degli Studi di Milano-Bicocca (UNIMIB)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)297-330
Seitenumfang34
FachzeitschriftMichigan mathematical journal
Jahrgang61
Ausgabenummer2
PublikationsstatusVeröffentlicht - Juni 2012

Abstract

This paper develops families of complex Enriques surfaces whose Brauer groups pull back identically to zero on the covering K3 surfaces. Our methods rely on isogenies with Kummer surfaces of product type. We offer both lattice theoretic and geometric constructions. We also sketch how the construction connects to string theory and Picard-Fuchs equations in the context of Enriques Calabi-Yau threefolds.

ASJC Scopus Sachgebiete

Zitieren

Enriques surfaces: Brauer groups and kummer structures. / Garbagnati, Alice; Schütt, Matthias.
in: Michigan mathematical journal, Jahrgang 61, Nr. 2, 06.2012, S. 297-330.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Garbagnati A, Schütt M. Enriques surfaces: Brauer groups and kummer structures. Michigan mathematical journal. 2012 Jun;61(2):297-330. doi: 10.1307/mmj/1339011529
Download
@article{f887cb42987c4c5c8e61fc1a92b92b3b,
title = "Enriques surfaces: Brauer groups and kummer structures",
abstract = "This paper develops families of complex Enriques surfaces whose Brauer groups pull back identically to zero on the covering K3 surfaces. Our methods rely on isogenies with Kummer surfaces of product type. We offer both lattice theoretic and geometric constructions. We also sketch how the construction connects to string theory and Picard-Fuchs equations in the context of Enriques Calabi-Yau threefolds. ",
author = "Alice Garbagnati and Matthias Sch{\"u}tt",
year = "2012",
month = jun,
doi = "10.1307/mmj/1339011529",
language = "English",
volume = "61",
pages = "297--330",
journal = "Michigan mathematical journal",
issn = "0026-2285",
publisher = "University of Michigan",
number = "2",

}

Download

TY - JOUR

T1 - Enriques surfaces

T2 - Brauer groups and kummer structures

AU - Garbagnati, Alice

AU - Schütt, Matthias

PY - 2012/6

Y1 - 2012/6

N2 - This paper develops families of complex Enriques surfaces whose Brauer groups pull back identically to zero on the covering K3 surfaces. Our methods rely on isogenies with Kummer surfaces of product type. We offer both lattice theoretic and geometric constructions. We also sketch how the construction connects to string theory and Picard-Fuchs equations in the context of Enriques Calabi-Yau threefolds.

AB - This paper develops families of complex Enriques surfaces whose Brauer groups pull back identically to zero on the covering K3 surfaces. Our methods rely on isogenies with Kummer surfaces of product type. We offer both lattice theoretic and geometric constructions. We also sketch how the construction connects to string theory and Picard-Fuchs equations in the context of Enriques Calabi-Yau threefolds.

UR - http://www.scopus.com/inward/record.url?scp=84873372810&partnerID=8YFLogxK

U2 - 10.1307/mmj/1339011529

DO - 10.1307/mmj/1339011529

M3 - Article

AN - SCOPUS:84873372810

VL - 61

SP - 297

EP - 330

JO - Michigan mathematical journal

JF - Michigan mathematical journal

SN - 0026-2285

IS - 2

ER -

Von denselben Autoren