Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 297-330 |
Seitenumfang | 34 |
Fachzeitschrift | Michigan mathematical journal |
Jahrgang | 61 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Juni 2012 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Michigan mathematical journal, Jahrgang 61, Nr. 2, 06.2012, S. 297-330.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Enriques surfaces
T2 - Brauer groups and kummer structures
AU - Garbagnati, Alice
AU - Schütt, Matthias
PY - 2012/6
Y1 - 2012/6
N2 - This paper develops families of complex Enriques surfaces whose Brauer groups pull back identically to zero on the covering K3 surfaces. Our methods rely on isogenies with Kummer surfaces of product type. We offer both lattice theoretic and geometric constructions. We also sketch how the construction connects to string theory and Picard-Fuchs equations in the context of Enriques Calabi-Yau threefolds.
AB - This paper develops families of complex Enriques surfaces whose Brauer groups pull back identically to zero on the covering K3 surfaces. Our methods rely on isogenies with Kummer surfaces of product type. We offer both lattice theoretic and geometric constructions. We also sketch how the construction connects to string theory and Picard-Fuchs equations in the context of Enriques Calabi-Yau threefolds.
UR - http://www.scopus.com/inward/record.url?scp=84873372810&partnerID=8YFLogxK
U2 - 10.1307/mmj/1339011529
DO - 10.1307/mmj/1339011529
M3 - Article
AN - SCOPUS:84873372810
VL - 61
SP - 297
EP - 330
JO - Michigan mathematical journal
JF - Michigan mathematical journal
SN - 0026-2285
IS - 2
ER -