Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1169–1214 |
Seitenumfang | 46 |
Fachzeitschrift | Mathematische Annalen |
Jahrgang | 380 |
Ausgabenummer | 3-4 |
Frühes Online-Datum | 9 Sept. 2020 |
Publikationsstatus | Veröffentlicht - Aug. 2021 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Annalen, Jahrgang 380, Nr. 3-4, 08.2021, S. 1169–1214.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Energy of sections of the Deligne-Hitchin twistor space
AU - Beck, Florian
AU - Heller, Sebastian
AU - Roeser, Markus
N1 - Funding Information: The first author is supported by the DFG Emmy-Noether grant on “Building blocks of physical theories from the geometry of quantization and BPS states”, number AL 1407/2-1. The second author was supported by RTG 1670 “Mathematics inspired by string theory and quantum field theory” funded by the Deutsche Forschungsgemeinschaft (DFG) while much of this work was carried out. The second author would also like to thank Lynn Heller and Franz Pedit for discussions about the Willmore functional, and Jun-ichi Inoguchi for discussions about dual surfaces.
PY - 2021/8
Y1 - 2021/8
N2 - We study a natural functional on the space of holomorphic sections of the Deligne-Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We give a link to a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. Moreover, we prove that for a certain class of real holomorphic sections of the Deligne-Hitchin moduli space, the functional is basically given by the Willmore energy of corresponding (equivariant) conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne-Hitchin moduli space from the space of twistor lines.
AB - We study a natural functional on the space of holomorphic sections of the Deligne-Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We give a link to a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. Moreover, we prove that for a certain class of real holomorphic sections of the Deligne-Hitchin moduli space, the functional is basically given by the Willmore energy of corresponding (equivariant) conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne-Hitchin moduli space from the space of twistor lines.
KW - math.DG
UR - http://www.scopus.com/inward/record.url?scp=85090438685&partnerID=8YFLogxK
U2 - 10.1007/s00208-020-02042-0
DO - 10.1007/s00208-020-02042-0
M3 - Article
VL - 380
SP - 1169
EP - 1214
JO - Mathematische Annalen
JF - Mathematische Annalen
SN - 0025-5831
IS - 3-4
ER -