Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Daniel Fink
  • Sean Shugar
  • Zygimantas Ziaukas
  • Christoph Schweers
  • Ahmed Trabelsi
  • Hans-Georg Jacob

Organisationseinheiten

Externe Organisationen

  • IAV GmbH
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungPrädiktion des Energiebedarfs eines hybrid elektrischen Kraftfahrzeugs zur Geschwindigkeitsoptimierung
OriginalspracheEnglisch
Titel des SammelwerksProceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems
Herausgeber/-innenJeroen Ploeg, Jeroen Ploeg, Markus Helfert, Karsten Berns, Oleg Gusikhin
Seiten116 - 123
Seitenumfang8
Band1
ISBN (elektronisch)9789897585739
PublikationsstatusVeröffentlicht - 3 Mai 2022
VeranstaltungInternational Conference on Vehicle Technology and Intelligent Transport Systems - Online Streaming
Dauer: 27 Apr. 202229 Apr. 2022
Konferenznummer: 8
https://vehits.scitevents.org

Publikationsreihe

NameInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings
ISSN (elektronisch)2184-495X

Abstract

Targeting a resource-efficient automotive traffic, modern driver assistance systems include speed optimization algorithms to minimize the vehicle’s energy demand, based on predictive route data. Within these algorithms, the required energy for upcoming operation points has to be determined. This paper presents a model-based approach, to predict the energy demand of a parallel hybrid electrical vehicle, which is suitable to be used in speed optimization algorithms. It relies on separate models for the individual power train components, and is identified for a real test vehicle. On route sections of 5 to 7 km the averaged root mean square error for the state of charge prediction results to 0.91% while the required amount of fuel can be predicted with an averaged root mean square error of 0.05 liters.

Schlagwörter

    Systems modeling, Prediction, Energy demand, vehicle application

ASJC Scopus Sachgebiete

Zitieren

Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization. / Fink, Daniel; Shugar, Sean; Ziaukas, Zygimantas et al.
Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems. Hrsg. / Jeroen Ploeg; Jeroen Ploeg; Markus Helfert; Karsten Berns; Oleg Gusikhin. Band 1 2022. S. 116 - 123 (International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Fink, D, Shugar, S, Ziaukas, Z, Schweers, C, Trabelsi, A & Jacob, H-G 2022, Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization. in J Ploeg, J Ploeg, M Helfert, K Berns & O Gusikhin (Hrsg.), Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems. Bd. 1, International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings, S. 116 - 123, International Conference on Vehicle Technology and Intelligent Transport Systems, 27 Apr. 2022. https://doi.org/10.5220/0011075600003191
Fink, D., Shugar, S., Ziaukas, Z., Schweers, C., Trabelsi, A., & Jacob, H.-G. (2022). Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization. In J. Ploeg, J. Ploeg, M. Helfert, K. Berns, & O. Gusikhin (Hrsg.), Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems (Band 1, S. 116 - 123). (International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings). https://doi.org/10.5220/0011075600003191
Fink D, Shugar S, Ziaukas Z, Schweers C, Trabelsi A, Jacob HG. Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization. in Ploeg J, Ploeg J, Helfert M, Berns K, Gusikhin O, Hrsg., Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems. Band 1. 2022. S. 116 - 123. (International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings). doi: 10.5220/0011075600003191
Fink, Daniel ; Shugar, Sean ; Ziaukas, Zygimantas et al. / Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization. Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems. Hrsg. / Jeroen Ploeg ; Jeroen Ploeg ; Markus Helfert ; Karsten Berns ; Oleg Gusikhin. Band 1 2022. S. 116 - 123 (International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings).
Download
@inproceedings{ca54ae5813134db282c5704a8296eb7d,
title = "Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization",
abstract = "Targeting a resource-efficient automotive traffic, modern driver assistance systems include speed optimization algorithms to minimize the vehicle's energy demand, based on predictive route data. Within these algorithms, the required energy for upcoming operation points has to be determined. This paper presents a model-based approach, to predict the energy demand of a parallel hybrid electrical vehicle, which is suitable to be used in speed optimization algorithms. It relies on separate models for the individual power train components, and is identified for a real test vehicle. On route sections of 5 to 7 km the averaged root mean square error for the state of charge prediction results to 0.91% while the required amount of fuel can be predicted with an averaged root mean square error of 0.05 liters.",
keywords = "Systems modeling, Prediction, Energy demand, vehicle application, Systems Modeling, Energy Demand Prediction",
author = "Daniel Fink and Sean Shugar and Zygimantas Ziaukas and Christoph Schweers and Ahmed Trabelsi and Hans-Georg Jacob",
year = "2022",
month = may,
day = "3",
doi = "10.5220/0011075600003191",
language = "English",
isbn = "978-989-758-573-9",
volume = "1",
series = "International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings",
pages = "116 -- 123",
editor = "Jeroen Ploeg and Jeroen Ploeg and Markus Helfert and Karsten Berns and Oleg Gusikhin",
booktitle = "Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems",
note = "International Conference on Vehicle Technology and Intelligent Transport Systems ; Conference date: 27-04-2022 Through 29-04-2022",
url = "https://vehits.scitevents.org",

}

Download

TY - GEN

T1 - Energy Demand Prediction in Hybrid Electrical Vehicles for Speed Optimization

AU - Fink, Daniel

AU - Shugar, Sean

AU - Ziaukas, Zygimantas

AU - Schweers, Christoph

AU - Trabelsi, Ahmed

AU - Jacob, Hans-Georg

N1 - Conference code: 8

PY - 2022/5/3

Y1 - 2022/5/3

N2 - Targeting a resource-efficient automotive traffic, modern driver assistance systems include speed optimization algorithms to minimize the vehicle's energy demand, based on predictive route data. Within these algorithms, the required energy for upcoming operation points has to be determined. This paper presents a model-based approach, to predict the energy demand of a parallel hybrid electrical vehicle, which is suitable to be used in speed optimization algorithms. It relies on separate models for the individual power train components, and is identified for a real test vehicle. On route sections of 5 to 7 km the averaged root mean square error for the state of charge prediction results to 0.91% while the required amount of fuel can be predicted with an averaged root mean square error of 0.05 liters.

AB - Targeting a resource-efficient automotive traffic, modern driver assistance systems include speed optimization algorithms to minimize the vehicle's energy demand, based on predictive route data. Within these algorithms, the required energy for upcoming operation points has to be determined. This paper presents a model-based approach, to predict the energy demand of a parallel hybrid electrical vehicle, which is suitable to be used in speed optimization algorithms. It relies on separate models for the individual power train components, and is identified for a real test vehicle. On route sections of 5 to 7 km the averaged root mean square error for the state of charge prediction results to 0.91% while the required amount of fuel can be predicted with an averaged root mean square error of 0.05 liters.

KW - Systems modeling

KW - Prediction

KW - Energy demand

KW - vehicle application

KW - Systems Modeling, Energy Demand Prediction

UR - http://www.scopus.com/inward/record.url?scp=85140968511&partnerID=8YFLogxK

U2 - 10.5220/0011075600003191

DO - 10.5220/0011075600003191

M3 - Conference contribution

SN - 978-989-758-573-9

VL - 1

T3 - International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings

SP - 116

EP - 123

BT - Proceedings of the 8th International Conference on Vehicle Technology and Intelligent Transport Systems

A2 - Ploeg, Jeroen

A2 - Ploeg, Jeroen

A2 - Helfert, Markus

A2 - Berns, Karsten

A2 - Gusikhin, Oleg

T2 - International Conference on Vehicle Technology and Intelligent Transport Systems

Y2 - 27 April 2022 through 29 April 2022

ER -