Loading [MathJax]/extensions/tex2jax.js

Embedding structures

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Marcel Erné
  • Jürgen Reinhold

Details

OriginalspracheEnglisch
Seiten (von - bis)637-645
Seitenumfang9
FachzeitschriftGraphs and combinatorics
Jahrgang17
Ausgabenummer4
PublikationsstatusVeröffentlicht - Dez. 2001

Abstract

For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.

ASJC Scopus Sachgebiete

Zitieren

Embedding structures. / Erné, Marcel; Reinhold, Jürgen.
in: Graphs and combinatorics, Jahrgang 17, Nr. 4, 12.2001, S. 637-645.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Erné, M & Reinhold, J 2001, 'Embedding structures', Graphs and combinatorics, Jg. 17, Nr. 4, S. 637-645. https://doi.org/10.1007/PL00007255
Erné, M., & Reinhold, J. (2001). Embedding structures. Graphs and combinatorics, 17(4), 637-645. https://doi.org/10.1007/PL00007255
Erné M, Reinhold J. Embedding structures. Graphs and combinatorics. 2001 Dez;17(4):637-645. doi: 10.1007/PL00007255
Erné, Marcel ; Reinhold, Jürgen. / Embedding structures. in: Graphs and combinatorics. 2001 ; Jahrgang 17, Nr. 4. S. 637-645.
Download
@article{f25b89b03b9946afa931d25925c10277,
title = "Embedding structures",
abstract = "For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.",
keywords = "Boolean, Embedding, Poset, Quasiordered set, Representation, Space, Subspace",
author = "Marcel Ern{\'e} and J{\"u}rgen Reinhold",
year = "2001",
month = dec,
doi = "10.1007/PL00007255",
language = "English",
volume = "17",
pages = "637--645",
journal = "Graphs and combinatorics",
issn = "0911-0119",
publisher = "Springer Japan",
number = "4",

}

Download

TY - JOUR

T1 - Embedding structures

AU - Erné, Marcel

AU - Reinhold, Jürgen

PY - 2001/12

Y1 - 2001/12

N2 - For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.

AB - For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.

KW - Boolean

KW - Embedding

KW - Poset

KW - Quasiordered set

KW - Representation

KW - Space

KW - Subspace

UR - http://www.scopus.com/inward/record.url?scp=19544367126&partnerID=8YFLogxK

U2 - 10.1007/PL00007255

DO - 10.1007/PL00007255

M3 - Article

AN - SCOPUS:19544367126

VL - 17

SP - 637

EP - 645

JO - Graphs and combinatorics

JF - Graphs and combinatorics

SN - 0911-0119

IS - 4

ER -