Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 637-645 |
Seitenumfang | 9 |
Fachzeitschrift | Graphs and combinatorics |
Jahrgang | 17 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Dez. 2001 |
Abstract
For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Theoretische Informatik
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Graphs and combinatorics, Jahrgang 17, Nr. 4, 12.2001, S. 637-645.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Embedding structures
AU - Erné, Marcel
AU - Reinhold, Jürgen
PY - 2001/12
Y1 - 2001/12
N2 - For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.
AB - For any quasiordered set ('quoset') or topological space S, the set Sub S of all nonempty subquosets or subspaces is quasiordered by embeddability. Given any cardinal number n, denote by pn and qn the smallest size of spaces S such that each poset, respectively, quoset with n points is embeddable in Sub S. For finite n, we prove the inequalities n + 1 ≤ pn ≤ qn ≤ pn + l(n) + l(l(n)), where l(n) = min{k ⊂ ℕ | n ≤ 2k}. For the smallest size bn of spaces S so that Sub S contains a principal filter isomorphic to the power set script P sign(n), we show n + l(n) - 1 ≤ bn ≤ n + l(n) + l(l(n)) + 2. Since pn ≤ bn, we thus improve recent results of McCluskey and McMaster who obtained pn ≤ n2. For infinite n, we obtain the equation bn = pn = qn = n.
KW - Boolean
KW - Embedding
KW - Poset
KW - Quasiordered set
KW - Representation
KW - Space
KW - Subspace
UR - http://www.scopus.com/inward/record.url?scp=19544367126&partnerID=8YFLogxK
U2 - 10.1007/PL00007255
DO - 10.1007/PL00007255
M3 - Article
AN - SCOPUS:19544367126
VL - 17
SP - 637
EP - 645
JO - Graphs and combinatorics
JF - Graphs and combinatorics
SN - 0911-0119
IS - 4
ER -