Embedding silicon nanoclusters into epitaxial rare earth oxide for nonvolatile memory applications

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Apurba Laha
  • D. Kühne
  • E. Bugiel
  • A. Fissel
  • H. J. Osten
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)85015
Seitenumfang1
FachzeitschriftSemiconductor Science and Technology
Jahrgang23
Ausgabenummer8
PublikationsstatusVeröffentlicht - Aug. 2008

Abstract

Structural and electrical properties of nonvolatile Si nanocluster memories using epitaxial Gd2O3 as a control and tunneling layer are demonstrated for the first time. Nanoclusters with average size of 5 nm and density of 2 × 1012 cm-2 exhibit excellent charge storage capacity with higher retention (∼105 s) and endurance (105 write/erase cycles) characteristics. The Pt/Gd2O 3/Si MOS capacitors comprising Si nanoclusters display large hysteresis (∼1.5-2 V) in capacitance-voltage measurements. We find that these Si nanoclusters are bonded with the metal oxide via Gd-O-Si (silicate-like) bonds as observed in x-ray photoelectron spectroscopy measurements. With such results demonstrated, Si nanoclusters embedded in an epitaxial rare earth oxide could be a potential candidate for future non-volatile memory devices.

ASJC Scopus Sachgebiete

Zitieren

Embedding silicon nanoclusters into epitaxial rare earth oxide for nonvolatile memory applications. / Laha, Apurba; Kühne, D.; Bugiel, E. et al.
in: Semiconductor Science and Technology, Jahrgang 23, Nr. 8, 08.2008, S. 85015.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Laha A, Kühne D, Bugiel E, Fissel A, Osten HJ. Embedding silicon nanoclusters into epitaxial rare earth oxide for nonvolatile memory applications. Semiconductor Science and Technology. 2008 Aug;23(8):85015. doi: 10.1088/0268-1242/23/8/085015
Laha, Apurba ; Kühne, D. ; Bugiel, E. et al. / Embedding silicon nanoclusters into epitaxial rare earth oxide for nonvolatile memory applications. in: Semiconductor Science and Technology. 2008 ; Jahrgang 23, Nr. 8. S. 85015.
Download
@article{074f4fffc8ec48fba2ab1d2126e71b63,
title = "Embedding silicon nanoclusters into epitaxial rare earth oxide for nonvolatile memory applications",
abstract = "Structural and electrical properties of nonvolatile Si nanocluster memories using epitaxial Gd2O3 as a control and tunneling layer are demonstrated for the first time. Nanoclusters with average size of 5 nm and density of 2 × 1012 cm-2 exhibit excellent charge storage capacity with higher retention (∼105 s) and endurance (105 write/erase cycles) characteristics. The Pt/Gd2O 3/Si MOS capacitors comprising Si nanoclusters display large hysteresis (∼1.5-2 V) in capacitance-voltage measurements. We find that these Si nanoclusters are bonded with the metal oxide via Gd-O-Si (silicate-like) bonds as observed in x-ray photoelectron spectroscopy measurements. With such results demonstrated, Si nanoclusters embedded in an epitaxial rare earth oxide could be a potential candidate for future non-volatile memory devices.",
author = "Apurba Laha and D. K{\"u}hne and E. Bugiel and A. Fissel and Osten, {H. J.}",
year = "2008",
month = aug,
doi = "10.1088/0268-1242/23/8/085015",
language = "English",
volume = "23",
pages = "85015",
journal = "Semiconductor Science and Technology",
issn = "0268-1242",
publisher = "IOP Publishing Ltd.",
number = "8",

}

Download

TY - JOUR

T1 - Embedding silicon nanoclusters into epitaxial rare earth oxide for nonvolatile memory applications

AU - Laha, Apurba

AU - Kühne, D.

AU - Bugiel, E.

AU - Fissel, A.

AU - Osten, H. J.

PY - 2008/8

Y1 - 2008/8

N2 - Structural and electrical properties of nonvolatile Si nanocluster memories using epitaxial Gd2O3 as a control and tunneling layer are demonstrated for the first time. Nanoclusters with average size of 5 nm and density of 2 × 1012 cm-2 exhibit excellent charge storage capacity with higher retention (∼105 s) and endurance (105 write/erase cycles) characteristics. The Pt/Gd2O 3/Si MOS capacitors comprising Si nanoclusters display large hysteresis (∼1.5-2 V) in capacitance-voltage measurements. We find that these Si nanoclusters are bonded with the metal oxide via Gd-O-Si (silicate-like) bonds as observed in x-ray photoelectron spectroscopy measurements. With such results demonstrated, Si nanoclusters embedded in an epitaxial rare earth oxide could be a potential candidate for future non-volatile memory devices.

AB - Structural and electrical properties of nonvolatile Si nanocluster memories using epitaxial Gd2O3 as a control and tunneling layer are demonstrated for the first time. Nanoclusters with average size of 5 nm and density of 2 × 1012 cm-2 exhibit excellent charge storage capacity with higher retention (∼105 s) and endurance (105 write/erase cycles) characteristics. The Pt/Gd2O 3/Si MOS capacitors comprising Si nanoclusters display large hysteresis (∼1.5-2 V) in capacitance-voltage measurements. We find that these Si nanoclusters are bonded with the metal oxide via Gd-O-Si (silicate-like) bonds as observed in x-ray photoelectron spectroscopy measurements. With such results demonstrated, Si nanoclusters embedded in an epitaxial rare earth oxide could be a potential candidate for future non-volatile memory devices.

UR - http://www.scopus.com/inward/record.url?scp=51849126419&partnerID=8YFLogxK

U2 - 10.1088/0268-1242/23/8/085015

DO - 10.1088/0268-1242/23/8/085015

M3 - Article

AN - SCOPUS:51849126419

VL - 23

SP - 85015

JO - Semiconductor Science and Technology

JF - Semiconductor Science and Technology

SN - 0268-1242

IS - 8

ER -