Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 177011 |
Seitenumfang | 7 |
Fachzeitschrift | Journal of alloys and compounds |
Jahrgang | 1010 |
Frühes Online-Datum | 13 Okt. 2024 |
Publikationsstatus | Veröffentlicht - 5 Jan. 2025 |
Abstract
Pairing of bismuth vanadate (BiVO4) with vanadium pentoxide (V2O5) forms a Type II heterojunction photoanode, which has been proven to be a high-performance photoanode architecture for efficient photoelectrochemical (PEC) water oxidation. To further support for advanced rational design and improvement of the heterojunction photoanode, it is quintessential to understand the mechanics and properties of photogenerated charge carriers formed. This study aims to probe the dynamics of photogenerated electron-hole pairs formed in pristine photoanode as well as the heterojunction photoanodes using transient absorption spectroscopy (TAS). Relative to the BiVO4/V2O5 structure, modelling and quantification of the decay constant helps in explaining why the V2O5/BiVO4 heterojunction photoanode exhibited a longer lifetime of the photogenerated charge carriers with a lower decay rate constant that leads to a much-improved overall generation of photocurrent density. An oxygen evolving catalyst of nickel oxyhydroxide (NiOOH) was then anchored on the exterior surfaces of the heterojunction photoanode system to further investigate and modify the transfer pathways of the photogenerated charge carriers. Furthermore, the hole- and scavenger-assisted TAS measurements on the BiVO4/V2O5 heterojunction photoanode revealed that the majority of trapped holes species are accumulated within the BiVO4 layer. The findings suggested that the Type II heterojunction formation in V2O5/BiVO4 could effectively reduce its charge recombination process.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Werkstoffwissenschaften (insg.)
- Metalle und Legierungen
- Werkstoffwissenschaften (insg.)
- Werkstoffchemie
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of alloys and compounds, Jahrgang 1010, 177011, 05.01.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Elucidating the dynamics and transfer pathways of photogenerated charge carriers in V2O5/BiVO4 heterojunction photoanodes
T2 - A transient absorption spectroscopy study
AU - Yaw, Chong Siang
AU - Günnemann, Carsten
AU - Bahnemann, Detlef W.
AU - Chong, Meng Nan
N1 - Publisher Copyright: © 2024 The Authors
PY - 2025/1/5
Y1 - 2025/1/5
N2 - Pairing of bismuth vanadate (BiVO4) with vanadium pentoxide (V2O5) forms a Type II heterojunction photoanode, which has been proven to be a high-performance photoanode architecture for efficient photoelectrochemical (PEC) water oxidation. To further support for advanced rational design and improvement of the heterojunction photoanode, it is quintessential to understand the mechanics and properties of photogenerated charge carriers formed. This study aims to probe the dynamics of photogenerated electron-hole pairs formed in pristine photoanode as well as the heterojunction photoanodes using transient absorption spectroscopy (TAS). Relative to the BiVO4/V2O5 structure, modelling and quantification of the decay constant helps in explaining why the V2O5/BiVO4 heterojunction photoanode exhibited a longer lifetime of the photogenerated charge carriers with a lower decay rate constant that leads to a much-improved overall generation of photocurrent density. An oxygen evolving catalyst of nickel oxyhydroxide (NiOOH) was then anchored on the exterior surfaces of the heterojunction photoanode system to further investigate and modify the transfer pathways of the photogenerated charge carriers. Furthermore, the hole- and scavenger-assisted TAS measurements on the BiVO4/V2O5 heterojunction photoanode revealed that the majority of trapped holes species are accumulated within the BiVO4 layer. The findings suggested that the Type II heterojunction formation in V2O5/BiVO4 could effectively reduce its charge recombination process.
AB - Pairing of bismuth vanadate (BiVO4) with vanadium pentoxide (V2O5) forms a Type II heterojunction photoanode, which has been proven to be a high-performance photoanode architecture for efficient photoelectrochemical (PEC) water oxidation. To further support for advanced rational design and improvement of the heterojunction photoanode, it is quintessential to understand the mechanics and properties of photogenerated charge carriers formed. This study aims to probe the dynamics of photogenerated electron-hole pairs formed in pristine photoanode as well as the heterojunction photoanodes using transient absorption spectroscopy (TAS). Relative to the BiVO4/V2O5 structure, modelling and quantification of the decay constant helps in explaining why the V2O5/BiVO4 heterojunction photoanode exhibited a longer lifetime of the photogenerated charge carriers with a lower decay rate constant that leads to a much-improved overall generation of photocurrent density. An oxygen evolving catalyst of nickel oxyhydroxide (NiOOH) was then anchored on the exterior surfaces of the heterojunction photoanode system to further investigate and modify the transfer pathways of the photogenerated charge carriers. Furthermore, the hole- and scavenger-assisted TAS measurements on the BiVO4/V2O5 heterojunction photoanode revealed that the majority of trapped holes species are accumulated within the BiVO4 layer. The findings suggested that the Type II heterojunction formation in V2O5/BiVO4 could effectively reduce its charge recombination process.
KW - Characterisation
KW - Electron-hole pairs
KW - Heterojunction photoanode
KW - PEC water splitting
KW - Photocatalysis
UR - http://www.scopus.com/inward/record.url?scp=85206456414&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2024.177011
DO - 10.1016/j.jallcom.2024.177011
M3 - Article
AN - SCOPUS:85206456414
VL - 1010
JO - Journal of alloys and compounds
JF - Journal of alloys and compounds
SN - 0925-8388
M1 - 177011
ER -