Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 103269 |
Fachzeitschrift | Probabilistic Engineering Mechanics |
Jahrgang | 69 |
Frühes Online-Datum | 25 März 2022 |
Publikationsstatus | Veröffentlicht - Juli 2022 |
Abstract
Research on stochastic processes in recent decades has pointed out that, in the context of modeling spatial or temporal uncertainties, auto-correlation functions that are differentiable at the origin have advantages over functions that are not differentiable. For instance, the non-differentiability of e.g., single exponential auto-correlation functions yields non-smooth sample paths. Such sample paths might not be physically possible or may yield numerical difficulties when used as random parameters in partial differential equations (such as encountered in e.g., mechanical equilibrium problems). Further, it is known that due to the non-differentiability of certain auto-correlation functions, more terms are required in the series expansion representations of the associated stochastic processes. This makes these representations less efficient from a computational standpoint. This paper elucidates some additional appealing features of auto-correlation functions which are differentiable at the origin. Further, it focuses on enhancing the arguments in favor of these functions already available in literature. Specifically, attention is placed on single exponential, modified exponential and squared exponential auto-correlation functions, which can be shown to be all part of the Whittle–Matérn family of functions. To start, it is shown that the power spectrum of differentiable kernels converges faster to zero with increasing frequency as compared to non-differentiable ones. This property allows capturing the same percentage of the total energy of the spectrum with a smaller cut-off frequency, and hence, less stochastic terms in the harmonic representation of stochastic processes. Further, this point is examined with regards to the Karhunen–Loève series expansion and first and second order Markov processes, generated by auto-regressive representations. The need for finite differentiability is stressed and illustrated.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Energie (insg.)
- Kernenergie und Kernkraftwerkstechnik
- Ingenieurwesen (insg.)
- Luft- und Raumfahrttechnik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Meerestechnik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Probabilistic Engineering Mechanics, Jahrgang 69, 103269, 07.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Elucidating appealing features of differentiable auto-correlation functions
T2 - A study on the modified exponential kernel
AU - Faes, Matthias G.R.
AU - Broggi, Matteo
AU - Spanos, Pol D.
AU - Beer, Michael
N1 - Funding Information: Matthias Faes acknowledges the support of the Research Foundation Flanders (FWO), Belgium under grant 12P3419N , as well as from the Alexander von Humboldt foundation for the partial funding of this work.
PY - 2022/7
Y1 - 2022/7
N2 - Research on stochastic processes in recent decades has pointed out that, in the context of modeling spatial or temporal uncertainties, auto-correlation functions that are differentiable at the origin have advantages over functions that are not differentiable. For instance, the non-differentiability of e.g., single exponential auto-correlation functions yields non-smooth sample paths. Such sample paths might not be physically possible or may yield numerical difficulties when used as random parameters in partial differential equations (such as encountered in e.g., mechanical equilibrium problems). Further, it is known that due to the non-differentiability of certain auto-correlation functions, more terms are required in the series expansion representations of the associated stochastic processes. This makes these representations less efficient from a computational standpoint. This paper elucidates some additional appealing features of auto-correlation functions which are differentiable at the origin. Further, it focuses on enhancing the arguments in favor of these functions already available in literature. Specifically, attention is placed on single exponential, modified exponential and squared exponential auto-correlation functions, which can be shown to be all part of the Whittle–Matérn family of functions. To start, it is shown that the power spectrum of differentiable kernels converges faster to zero with increasing frequency as compared to non-differentiable ones. This property allows capturing the same percentage of the total energy of the spectrum with a smaller cut-off frequency, and hence, less stochastic terms in the harmonic representation of stochastic processes. Further, this point is examined with regards to the Karhunen–Loève series expansion and first and second order Markov processes, generated by auto-regressive representations. The need for finite differentiability is stressed and illustrated.
AB - Research on stochastic processes in recent decades has pointed out that, in the context of modeling spatial or temporal uncertainties, auto-correlation functions that are differentiable at the origin have advantages over functions that are not differentiable. For instance, the non-differentiability of e.g., single exponential auto-correlation functions yields non-smooth sample paths. Such sample paths might not be physically possible or may yield numerical difficulties when used as random parameters in partial differential equations (such as encountered in e.g., mechanical equilibrium problems). Further, it is known that due to the non-differentiability of certain auto-correlation functions, more terms are required in the series expansion representations of the associated stochastic processes. This makes these representations less efficient from a computational standpoint. This paper elucidates some additional appealing features of auto-correlation functions which are differentiable at the origin. Further, it focuses on enhancing the arguments in favor of these functions already available in literature. Specifically, attention is placed on single exponential, modified exponential and squared exponential auto-correlation functions, which can be shown to be all part of the Whittle–Matérn family of functions. To start, it is shown that the power spectrum of differentiable kernels converges faster to zero with increasing frequency as compared to non-differentiable ones. This property allows capturing the same percentage of the total energy of the spectrum with a smaller cut-off frequency, and hence, less stochastic terms in the harmonic representation of stochastic processes. Further, this point is examined with regards to the Karhunen–Loève series expansion and first and second order Markov processes, generated by auto-regressive representations. The need for finite differentiability is stressed and illustrated.
KW - Autocorrelation
KW - Convergence analysis
KW - Random field
KW - Stochastic analysis
UR - http://www.scopus.com/inward/record.url?scp=85127740071&partnerID=8YFLogxK
U2 - 10.1016/j.probengmech.2022.103269
DO - 10.1016/j.probengmech.2022.103269
M3 - Article
AN - SCOPUS:85127740071
VL - 69
JO - Probabilistic Engineering Mechanics
JF - Probabilistic Engineering Mechanics
SN - 0266-8920
M1 - 103269
ER -