Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Mordell–Weil Lattices |
Herausgeber (Verlag) | Springer Singapore |
Seiten | 317-353 |
Seitenumfang | 37 |
Auflage | 1. |
ISBN (elektronisch) | 978-981-32-9301-4 |
ISBN (Print) | 978-981-32-9300-7, 978-981-32-9303-8 |
Publikationsstatus | Veröffentlicht - 17 Okt. 2019 |
Publikationsreihe
Name | Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics |
---|---|
Band | 70 |
ISSN (Print) | 0071-1136 |
ISSN (elektronisch) | 2197-5655 |
Abstract
In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Mordell–Weil Lattices . 1. Aufl. Springer Singapore, 2019. S. 317-353 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Band 70).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Elliptic K3 Surface
T2 - Special Topics
AU - Schütt, Matthias
AU - Shioda, Tetsuji
PY - 2019/10/17
Y1 - 2019/10/17
N2 - In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.
AB - In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.
UR - http://www.scopus.com/inward/record.url?scp=85074667377&partnerID=8YFLogxK
U2 - 10.1007/978-981-32-9301-4_12
DO - 10.1007/978-981-32-9301-4_12
M3 - Contribution to book/anthology
AN - SCOPUS:85074667377
SN - 978-981-32-9300-7
SN - 978-981-32-9303-8
T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
SP - 317
EP - 353
BT - Mordell–Weil Lattices
PB - Springer Singapore
ER -