Electronic, Thermal and Mechanical Properties of Carbon and Boron Nitride Holey Graphyne Monolayers

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer6642
Seitenumfang8
FachzeitschriftMATERIALS
Jahrgang16
Ausgabenummer20
PublikationsstatusVeröffentlicht - 11 Okt. 2023

Abstract

In a recent experimental accomplishment, a two-dimensional holey graphyne semiconducting nanosheet with unusual annulative π-extension has been fabricated. Motivated by the aforementioned advance, herein we theoretically explore the electronic, dynamical stability, thermal and mechanical properties of carbon (C) and boron nitride (BN) holey graphyne (HGY) monolayers. Density functional theory (DFT) results reveal that while the C-HGY monolayer shows an appealing direct gap of 1.00 (0.50) eV according to the HSE06(PBE) functional, the BNHGY monolayer is an indirect insulator with large band gaps of 5.58 (4.20) eV. Furthermore, the elastic modulus (ultimate tensile strength) values of the single-layer C- and BN-HGY are predicted to be 127(41) and 105(29) GPa, respectively. The phononic and thermal properties are further investigated using machine learning interatomic potentials (MLIPs). The predicted phonon spectra confirm the dynamical stability of these novel nanoporous lattices. The room temperature lattice thermal conductivity of the considered monolayers is estimated to be very close, around 14.0 ± 1.5 W/mK. At room temperature, the C-HGY and BN-HGY monolayers are predicted to yield an ultrahigh negative thermal expansion coefficient, by more than one order of magnitude larger than that of the graphene. The presented results reveal decent stability, anomalously low elastic modulus to tensile strength ratio, ultrahigh negative thermal expansion coefficients and moderate lattice thermal conductivity of the semiconducting C-HGY and insulating BN-HGY monolayers.

ASJC Scopus Sachgebiete

Zitieren

Electronic, Thermal and Mechanical Properties of Carbon and Boron Nitride Holey Graphyne Monolayers. / Mortazavi, Bohayra.
in: MATERIALS, Jahrgang 16, Nr. 20, 6642, 11.10.2023.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{4dbef79c0daa43988db159ac3c2efce0,
title = "Electronic, Thermal and Mechanical Properties of Carbon and Boron Nitride Holey Graphyne Monolayers",
abstract = "In a recent experimental accomplishment, a two-dimensional holey graphyne semiconducting nanosheet with unusual annulative π-extension has been fabricated. Motivated by the aforementioned advance, herein we theoretically explore the electronic, dynamical stability, thermal and mechanical properties of carbon (C) and boron nitride (BN) holey graphyne (HGY) monolayers. Density functional theory (DFT) results reveal that while the C-HGY monolayer shows an appealing direct gap of 1.00 (0.50) eV according to the HSE06(PBE) functional, the BNHGY monolayer is an indirect insulator with large band gaps of 5.58 (4.20) eV. Furthermore, the elastic modulus (ultimate tensile strength) values of the single-layer C- and BN-HGY are predicted to be 127(41) and 105(29) GPa, respectively. The phononic and thermal properties are further investigated using machine learning interatomic potentials (MLIPs). The predicted phonon spectra confirm the dynamical stability of these novel nanoporous lattices. The room temperature lattice thermal conductivity of the considered monolayers is estimated to be very close, around 14.0 ± 1.5 W/mK. At room temperature, the C-HGY and BN-HGY monolayers are predicted to yield an ultrahigh negative thermal expansion coefficient, by more than one order of magnitude larger than that of the graphene. The presented results reveal decent stability, anomalously low elastic modulus to tensile strength ratio, ultrahigh negative thermal expansion coefficients and moderate lattice thermal conductivity of the semiconducting C-HGY and insulating BN-HGY monolayers.",
keywords = "boron nitride, first-principles, holey graphyne, machine learning, monolayers",
author = "Bohayra Mortazavi",
note = "Funding Information: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany{\textquoteright}s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ",
year = "2023",
month = oct,
day = "11",
doi = "10.3390/ma16206642",
language = "English",
volume = "16",
journal = "MATERIALS",
issn = "1996-1944",
publisher = "MDPI AG",
number = "20",

}

Download

TY - JOUR

T1 - Electronic, Thermal and Mechanical Properties of Carbon and Boron Nitride Holey Graphyne Monolayers

AU - Mortazavi, Bohayra

N1 - Funding Information: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).

PY - 2023/10/11

Y1 - 2023/10/11

N2 - In a recent experimental accomplishment, a two-dimensional holey graphyne semiconducting nanosheet with unusual annulative π-extension has been fabricated. Motivated by the aforementioned advance, herein we theoretically explore the electronic, dynamical stability, thermal and mechanical properties of carbon (C) and boron nitride (BN) holey graphyne (HGY) monolayers. Density functional theory (DFT) results reveal that while the C-HGY monolayer shows an appealing direct gap of 1.00 (0.50) eV according to the HSE06(PBE) functional, the BNHGY monolayer is an indirect insulator with large band gaps of 5.58 (4.20) eV. Furthermore, the elastic modulus (ultimate tensile strength) values of the single-layer C- and BN-HGY are predicted to be 127(41) and 105(29) GPa, respectively. The phononic and thermal properties are further investigated using machine learning interatomic potentials (MLIPs). The predicted phonon spectra confirm the dynamical stability of these novel nanoporous lattices. The room temperature lattice thermal conductivity of the considered monolayers is estimated to be very close, around 14.0 ± 1.5 W/mK. At room temperature, the C-HGY and BN-HGY monolayers are predicted to yield an ultrahigh negative thermal expansion coefficient, by more than one order of magnitude larger than that of the graphene. The presented results reveal decent stability, anomalously low elastic modulus to tensile strength ratio, ultrahigh negative thermal expansion coefficients and moderate lattice thermal conductivity of the semiconducting C-HGY and insulating BN-HGY monolayers.

AB - In a recent experimental accomplishment, a two-dimensional holey graphyne semiconducting nanosheet with unusual annulative π-extension has been fabricated. Motivated by the aforementioned advance, herein we theoretically explore the electronic, dynamical stability, thermal and mechanical properties of carbon (C) and boron nitride (BN) holey graphyne (HGY) monolayers. Density functional theory (DFT) results reveal that while the C-HGY monolayer shows an appealing direct gap of 1.00 (0.50) eV according to the HSE06(PBE) functional, the BNHGY monolayer is an indirect insulator with large band gaps of 5.58 (4.20) eV. Furthermore, the elastic modulus (ultimate tensile strength) values of the single-layer C- and BN-HGY are predicted to be 127(41) and 105(29) GPa, respectively. The phononic and thermal properties are further investigated using machine learning interatomic potentials (MLIPs). The predicted phonon spectra confirm the dynamical stability of these novel nanoporous lattices. The room temperature lattice thermal conductivity of the considered monolayers is estimated to be very close, around 14.0 ± 1.5 W/mK. At room temperature, the C-HGY and BN-HGY monolayers are predicted to yield an ultrahigh negative thermal expansion coefficient, by more than one order of magnitude larger than that of the graphene. The presented results reveal decent stability, anomalously low elastic modulus to tensile strength ratio, ultrahigh negative thermal expansion coefficients and moderate lattice thermal conductivity of the semiconducting C-HGY and insulating BN-HGY monolayers.

KW - boron nitride

KW - first-principles

KW - holey graphyne

KW - machine learning

KW - monolayers

UR - http://www.scopus.com/inward/record.url?scp=85175073599&partnerID=8YFLogxK

U2 - 10.3390/ma16206642

DO - 10.3390/ma16206642

M3 - Article

AN - SCOPUS:85175073599

VL - 16

JO - MATERIALS

JF - MATERIALS

SN - 1996-1944

IS - 20

M1 - 6642

ER -