Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 194 |
Fachzeitschrift | Batteries |
Jahrgang | 8 |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 19 Okt. 2022 |
Abstract
Recently, benzotrithiophene graphdiyne (BTT-GDY), a novel two-dimensional (2D) carbon-based material, was grown via a bottom-up synthesis strategy. Using the BTT-GDY lattice and by replacing the S atoms with N, NH and O, we designed three novel GDY lattices, which we named BTHP-, BTP- and BTF-GDY, respectively. Next, we explored structural, electronic, mechanical, optical, photocatalytic and Li-ion storage properties, as well as carrier mobilities, of novel GDY monolayers. Phonon dispersion relations, mechanical and failure behavior were explored using the machine learning interatomic potentials (MLIPs). The obtained HSE06 results reveal that BTX-GDYs (X = P, F, T) are direct gap semiconductors with band gaps in the range of 2.49–2.65 eV, whereas the BTHP-GDY shows a narrow indirect band gap of 0.06 eV. With appropriate band offsets, good carrier mobilities and a strong capability for the absorption of visible and ultraviolet range of light, BTF- and BTT-GDYs were predicted to be promising candidates for overall photocatalytic water splitting. The BTHP-GDY nanosheet, noticeably, was found to yield an ultrahigh Li-ion storage capacity of over 2400 mAh/g. The obtained findings provide a comprehensive vision of the critical physical properties of the novel BTT-based GDY nanosheets and highlight their potential for applications in nanoelectronics and energy storage and conversion systems.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
- Chemie (insg.)
- Elektrochemie
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Batteries, Jahrgang 8, Nr. 10, 194, 19.10.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Electronic, Optical, Mechanical and Li-Ion Storage Properties of Novel Benzotrithiophene-Based Graphdiyne Monolayers Explored by First Principles and Machine Learning
AU - Mortazavi, Bohayra
AU - Shojaei, Fazel
AU - Shahrokhi, Masoud
AU - Rabczuk, Timon
AU - Shapeev, Alexander V.
AU - Zhuang, Xiaoying
N1 - Funding Information: This research was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). A.V.S. is supported by the Russian Science Foundation (Grant No. 18-13-00479, https://rscf.ru/project/18-13-00479/, accessed on 24 August 2022).
PY - 2022/10/19
Y1 - 2022/10/19
N2 - Recently, benzotrithiophene graphdiyne (BTT-GDY), a novel two-dimensional (2D) carbon-based material, was grown via a bottom-up synthesis strategy. Using the BTT-GDY lattice and by replacing the S atoms with N, NH and O, we designed three novel GDY lattices, which we named BTHP-, BTP- and BTF-GDY, respectively. Next, we explored structural, electronic, mechanical, optical, photocatalytic and Li-ion storage properties, as well as carrier mobilities, of novel GDY monolayers. Phonon dispersion relations, mechanical and failure behavior were explored using the machine learning interatomic potentials (MLIPs). The obtained HSE06 results reveal that BTX-GDYs (X = P, F, T) are direct gap semiconductors with band gaps in the range of 2.49–2.65 eV, whereas the BTHP-GDY shows a narrow indirect band gap of 0.06 eV. With appropriate band offsets, good carrier mobilities and a strong capability for the absorption of visible and ultraviolet range of light, BTF- and BTT-GDYs were predicted to be promising candidates for overall photocatalytic water splitting. The BTHP-GDY nanosheet, noticeably, was found to yield an ultrahigh Li-ion storage capacity of over 2400 mAh/g. The obtained findings provide a comprehensive vision of the critical physical properties of the novel BTT-based GDY nanosheets and highlight their potential for applications in nanoelectronics and energy storage and conversion systems.
AB - Recently, benzotrithiophene graphdiyne (BTT-GDY), a novel two-dimensional (2D) carbon-based material, was grown via a bottom-up synthesis strategy. Using the BTT-GDY lattice and by replacing the S atoms with N, NH and O, we designed three novel GDY lattices, which we named BTHP-, BTP- and BTF-GDY, respectively. Next, we explored structural, electronic, mechanical, optical, photocatalytic and Li-ion storage properties, as well as carrier mobilities, of novel GDY monolayers. Phonon dispersion relations, mechanical and failure behavior were explored using the machine learning interatomic potentials (MLIPs). The obtained HSE06 results reveal that BTX-GDYs (X = P, F, T) are direct gap semiconductors with band gaps in the range of 2.49–2.65 eV, whereas the BTHP-GDY shows a narrow indirect band gap of 0.06 eV. With appropriate band offsets, good carrier mobilities and a strong capability for the absorption of visible and ultraviolet range of light, BTF- and BTT-GDYs were predicted to be promising candidates for overall photocatalytic water splitting. The BTHP-GDY nanosheet, noticeably, was found to yield an ultrahigh Li-ion storage capacity of over 2400 mAh/g. The obtained findings provide a comprehensive vision of the critical physical properties of the novel BTT-based GDY nanosheets and highlight their potential for applications in nanoelectronics and energy storage and conversion systems.
KW - graphdiyne
KW - machine learning
KW - mechanical
KW - optical
KW - semiconductors
UR - http://www.scopus.com/inward/record.url?scp=85140433433&partnerID=8YFLogxK
U2 - 10.3390/batteries8100194
DO - 10.3390/batteries8100194
M3 - Article
AN - SCOPUS:85140433433
VL - 8
JO - Batteries
JF - Batteries
IS - 10
M1 - 194
ER -