Details
Originalsprache | Englisch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 5 Mai 2023 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 2023 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2023. 270 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Electron Momentum Distributions from Strong-Field-Induced Ionization of Atoms and Molecules
AU - Brennecke, Simon
N1 - Doctoral thesis
PY - 2023
Y1 - 2023
N2 - High-intensity femtosecond laser pulses in the visible or infrared range can induce electron emission. This single-ionization process may be interpreted as a sequence of (nonadiabatic) tunnel ionization and subsequent acceleration of the electron by the external oscillating field in the presence of the electrostatic force between electron and parent ion. Based on the analysis of photoelectron momentum distributions from the numerical solution of the time-dependent Schrödinger equation, this thesis theoretically studies a variety of phenomena taking place in atoms as well as in molecules in strong fields. The underlying physical mechanisms are revealed by simplified models which take the nonperturbative character of the ionization process into account. The simulation results for several settings are directly compared to measurements, offering the possibility to benchmark state-of-the-art theory and experiment against each other. One example of this is an investigation of the nonadiabatic strong-field ionization of atomic hydrogen in an attoclock setting. More generally, the deflection of the photoelectrons is analyzed in different attoclock configurations to explore the initial conditions of electrons at the tunnel exit—the position where the electron appears after tunneling. When a molecule is ionized, its orbital structure influences the liberated electron wave packet. The orbital imprint on the momentum-space phase of the wave packet, which encodes spatial information, is demonstrated and an interferometric approach to access these phases is evaluated. A characterization of the freed wave packet is crucial as it influences subsequent processes. Such secondary processes are induced when the electron is driven back to the parent ion and scatters off. Similar to focusing of light by a lens, the Coulomb attraction forces scattered electron wave packets through focal points, causing a shift of their phase. Due to the interference of outgoing waves, these phases become visible in electron momentum distributions. For a faithful description, these focal-point effects must be included in a prefactor of the exponentiated action in semiclassical models. Furthermore, the control of electron scattering dynamics is demonstrated for low-energy electrons close to the continuum threshold by means of near-single-cycle terahertz pulses. The temporally-localized preparation of the electron wave packet by a femtosecond laser pulse at a well-defined time within the terahertz field enables a switching between different regimes of dynamics, ranging from recollision-free acceleration to extensive scattering phenomena. In contrast to most studies in the electric dipole approximation that consider only the temporal evolution of the external electric field, various beyond-dipole effects in strong-field ionization are explored in the present work. The microscopic mechanisms of nondipole modifications are thoroughly analyzed. There, the effects of the spatially-varying electric field and of the magnetic field as well as their fingerprints on the geometry of the momentum distributions are identified. Furthermore, the subcycle time resolution of the light-induced momentum transfer in an attoclock-like setup is explored theoretically. Electron recollisions entirely change the observed nondipole effects and render the observations sensitive to the electronic target structure. The high-order above-threshold ionization caused by large-angle scattering is investigated both for exemplary atoms and for diatomic molecules through examination of nondipole shifts of the lateral momentum distribution. The phases of the electron wave packets are also altered by beyond-dipole effects. It is shown that this results in a displacement of ring-link structures known as above-threshold ionization rings that are caused by intercycle interference. In addition, the holographic structures arising from the subcycle interference of scattered and nonscattered electrons are modified.
AB - High-intensity femtosecond laser pulses in the visible or infrared range can induce electron emission. This single-ionization process may be interpreted as a sequence of (nonadiabatic) tunnel ionization and subsequent acceleration of the electron by the external oscillating field in the presence of the electrostatic force between electron and parent ion. Based on the analysis of photoelectron momentum distributions from the numerical solution of the time-dependent Schrödinger equation, this thesis theoretically studies a variety of phenomena taking place in atoms as well as in molecules in strong fields. The underlying physical mechanisms are revealed by simplified models which take the nonperturbative character of the ionization process into account. The simulation results for several settings are directly compared to measurements, offering the possibility to benchmark state-of-the-art theory and experiment against each other. One example of this is an investigation of the nonadiabatic strong-field ionization of atomic hydrogen in an attoclock setting. More generally, the deflection of the photoelectrons is analyzed in different attoclock configurations to explore the initial conditions of electrons at the tunnel exit—the position where the electron appears after tunneling. When a molecule is ionized, its orbital structure influences the liberated electron wave packet. The orbital imprint on the momentum-space phase of the wave packet, which encodes spatial information, is demonstrated and an interferometric approach to access these phases is evaluated. A characterization of the freed wave packet is crucial as it influences subsequent processes. Such secondary processes are induced when the electron is driven back to the parent ion and scatters off. Similar to focusing of light by a lens, the Coulomb attraction forces scattered electron wave packets through focal points, causing a shift of their phase. Due to the interference of outgoing waves, these phases become visible in electron momentum distributions. For a faithful description, these focal-point effects must be included in a prefactor of the exponentiated action in semiclassical models. Furthermore, the control of electron scattering dynamics is demonstrated for low-energy electrons close to the continuum threshold by means of near-single-cycle terahertz pulses. The temporally-localized preparation of the electron wave packet by a femtosecond laser pulse at a well-defined time within the terahertz field enables a switching between different regimes of dynamics, ranging from recollision-free acceleration to extensive scattering phenomena. In contrast to most studies in the electric dipole approximation that consider only the temporal evolution of the external electric field, various beyond-dipole effects in strong-field ionization are explored in the present work. The microscopic mechanisms of nondipole modifications are thoroughly analyzed. There, the effects of the spatially-varying electric field and of the magnetic field as well as their fingerprints on the geometry of the momentum distributions are identified. Furthermore, the subcycle time resolution of the light-induced momentum transfer in an attoclock-like setup is explored theoretically. Electron recollisions entirely change the observed nondipole effects and render the observations sensitive to the electronic target structure. The high-order above-threshold ionization caused by large-angle scattering is investigated both for exemplary atoms and for diatomic molecules through examination of nondipole shifts of the lateral momentum distribution. The phases of the electron wave packets are also altered by beyond-dipole effects. It is shown that this results in a displacement of ring-link structures known as above-threshold ionization rings that are caused by intercycle interference. In addition, the holographic structures arising from the subcycle interference of scattered and nonscattered electrons are modified.
U2 - 10.15488/13718
DO - 10.15488/13718
M3 - Doctoral thesis
CY - Hannover
ER -