Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 14 |
Seitenumfang | 20 |
Fachzeitschrift | Analysis and mathematical physics |
Jahrgang | 13 |
Ausgabenummer | 1 |
Frühes Online-Datum | 6 Jan. 2023 |
Publikationsstatus | Veröffentlicht - Feb. 2023 |
Abstract
In this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Algebra und Zahlentheorie
- Mathematik (insg.)
- Mathematische Physik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analysis and mathematical physics, Jahrgang 13, Nr. 1, 14, 02.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Eigenvalues of the Laplacian on balls with spherically symmetric metrics
AU - Berge, Stine Marie
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL.
PY - 2023/2
Y1 - 2023/2
N2 - In this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
AB - In this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
UR - http://www.scopus.com/inward/record.url?scp=85145843681&partnerID=8YFLogxK
U2 - 10.1007/s13324-022-00772-9
DO - 10.1007/s13324-022-00772-9
M3 - Article
AN - SCOPUS:85145843681
VL - 13
JO - Analysis and mathematical physics
JF - Analysis and mathematical physics
SN - 1664-2368
IS - 1
M1 - 14
ER -