Efficient Tracking of Breaking News in Twitter

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • GESIS - Leibniz-Institut für Sozialwissenschaften
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksWebSci 2019
UntertitelProceedings of the 11th ACM Conference on Web Science
Seiten135-136
Seitenumfang2
ISBN (elektronisch)9781450362023
PublikationsstatusVeröffentlicht - 26 Juni 2019
Veranstaltung11th ACM Conference on Web Science, WebSci 2019 - Boston, USA / Vereinigte Staaten
Dauer: 30 Juni 20193 Juli 2019

Abstract

We present an efficient graph-based method for filtering tweets relevant to a given breaking news from large tweet streams. Unlike existing models that either require manual effort, strong supervision, and/or not scalable, our method can automatically and effectively filter incoming relevant tweets starting from just a small number of past relevant tweets. Extensive experiments on both synthetic and real datasets show that our proposed method significantly outperforms other methods in filtering the relevant tweets while being as fast as the most efficient state-of-The-Art method.

ASJC Scopus Sachgebiete

Zitieren

Efficient Tracking of Breaking News in Twitter. / Hoang, Tuan Anh; Nguyen, Thi Huyen; Nejdl, Wolfgang.
WebSci 2019: Proceedings of the 11th ACM Conference on Web Science. 2019. S. 135-136.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Hoang, TA, Nguyen, TH & Nejdl, W 2019, Efficient Tracking of Breaking News in Twitter. in WebSci 2019: Proceedings of the 11th ACM Conference on Web Science. S. 135-136, 11th ACM Conference on Web Science, WebSci 2019, Boston, USA / Vereinigte Staaten, 30 Juni 2019. https://doi.org/10.1145/3292522.3326058
Hoang, T. A., Nguyen, T. H., & Nejdl, W. (2019). Efficient Tracking of Breaking News in Twitter. In WebSci 2019: Proceedings of the 11th ACM Conference on Web Science (S. 135-136) https://doi.org/10.1145/3292522.3326058
Hoang TA, Nguyen TH, Nejdl W. Efficient Tracking of Breaking News in Twitter. in WebSci 2019: Proceedings of the 11th ACM Conference on Web Science. 2019. S. 135-136 doi: 10.1145/3292522.3326058
Hoang, Tuan Anh ; Nguyen, Thi Huyen ; Nejdl, Wolfgang. / Efficient Tracking of Breaking News in Twitter. WebSci 2019: Proceedings of the 11th ACM Conference on Web Science. 2019. S. 135-136
Download
@inproceedings{1e01e3e900724adaab46eed629bda6ee,
title = "Efficient Tracking of Breaking News in Twitter",
abstract = "We present an efficient graph-based method for filtering tweets relevant to a given breaking news from large tweet streams. Unlike existing models that either require manual effort, strong supervision, and/or not scalable, our method can automatically and effectively filter incoming relevant tweets starting from just a small number of past relevant tweets. Extensive experiments on both synthetic and real datasets show that our proposed method significantly outperforms other methods in filtering the relevant tweets while being as fast as the most efficient state-of-The-Art method.",
author = "Hoang, {Tuan Anh} and Nguyen, {Thi Huyen} and Wolfgang Nejdl",
year = "2019",
month = jun,
day = "26",
doi = "10.1145/3292522.3326058",
language = "English",
pages = "135--136",
booktitle = "WebSci 2019",
note = "11th ACM Conference on Web Science, WebSci 2019 ; Conference date: 30-06-2019 Through 03-07-2019",

}

Download

TY - GEN

T1 - Efficient Tracking of Breaking News in Twitter

AU - Hoang, Tuan Anh

AU - Nguyen, Thi Huyen

AU - Nejdl, Wolfgang

PY - 2019/6/26

Y1 - 2019/6/26

N2 - We present an efficient graph-based method for filtering tweets relevant to a given breaking news from large tweet streams. Unlike existing models that either require manual effort, strong supervision, and/or not scalable, our method can automatically and effectively filter incoming relevant tweets starting from just a small number of past relevant tweets. Extensive experiments on both synthetic and real datasets show that our proposed method significantly outperforms other methods in filtering the relevant tweets while being as fast as the most efficient state-of-The-Art method.

AB - We present an efficient graph-based method for filtering tweets relevant to a given breaking news from large tweet streams. Unlike existing models that either require manual effort, strong supervision, and/or not scalable, our method can automatically and effectively filter incoming relevant tweets starting from just a small number of past relevant tweets. Extensive experiments on both synthetic and real datasets show that our proposed method significantly outperforms other methods in filtering the relevant tweets while being as fast as the most efficient state-of-The-Art method.

UR - http://www.scopus.com/inward/record.url?scp=85069527255&partnerID=8YFLogxK

U2 - 10.1145/3292522.3326058

DO - 10.1145/3292522.3326058

M3 - Conference contribution

AN - SCOPUS:85069527255

SP - 135

EP - 136

BT - WebSci 2019

T2 - 11th ACM Conference on Web Science, WebSci 2019

Y2 - 30 June 2019 through 3 July 2019

ER -

Von denselben Autoren