Efficient resilience analysis and decision-making for complex engineering systems

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Julian Salomon
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades19 Juli 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Moderne Gesellschaften sind weltweit zunehmend von der reibungslosen Funktionalität immer komplexer werdender Systeme, wie beispielsweise Infrastruktursysteme, digitale Systeme wie das Internet oder hochentwickelten Maschinen, abhängig. Sie bilden die Eckpfeiler unserer technologisch fortgeschrittenen Welt, und ihre Effizienz steht in direktem Zusammenhang mit unserem Wohlbefinden sowie dem Fortschritt der Gesellschaft. Diese wichtigen Systeme sind jedoch einer ständigen und breiten Palette von Bedrohungen natürlichen, technischen und anthropogenen Ursprungs ausgesetzt. Das Auftreten globaler Krisen wie die COVID-19-Pandemie und die anhaltende Bedrohung durch den Klimawandel haben die Anfälligkeit der weit verzweigten und voneinander abhängigen Systeme sowie die Unmöglichkeit einer Gefahrenvorhersage in voller Gänze eindrücklich verdeutlicht. Die Pandemie mit ihren weitreichenden und unerwarteten Auswirkungen hat gezeigt, wie ein externer Schock selbst die fortschrittlichsten Systeme zum Stillstand bringen kann, während der anhaltende Klimawandel immer wieder beispiellose Risiken für die Systemstabilität und -leistung hervorbringt. Diese globalen Krisen unterstreichen den Bedarf an Systemen, die nicht nur Störungen standhalten, sondern sich auch schnell und effizient von ihnen erholen können. Das Konzept der Resilienz und die damit verbundenen Entwicklungen umfassen diese Anforderungen: Analyse, Abwägung und Optimierung der Zuverlässigkeit, Robustheit, Redundanz, Anpassungsfähigkeit und Wiederherstellbarkeit von Systemen -- sowohl aus technischer als auch aus wirtschaftlicher Sicht. In dieser kumulativen Dissertation steht daher die Entwicklung umfassender und effizienter Instrumente für die Resilienz-basierte Analyse und Entscheidungsfindung von komplexen Systemen im Mittelpunkt. Das neu entwickelte Resilienz-Entscheidungsfindungsverfahren steht im Kern dieser Entwicklungen. Es basiert auf einem adaptierten systemischen Risikomaß, einer zeitabhängigen, probabilistischen Resilienzmetrik sowie einem Gittersuchalgorithmus und stellt eine bedeutende Innovation dar, da es Entscheidungsträgern ermöglicht, ein optimales Gleichgewicht zwischen verschiedenen Arten von Resilienz-steigernden Maßnahmen unter Berücksichtigung monetärer Aspekte zu identifizieren. Zunehmend weisen Systemkomponenten eine erhebliche Eigenkomplexität auf, was dazu führt, dass sie selbst als Systeme modelliert werden müssen. Hieraus ergeben sich Systeme aus Systemen mit hoher Komplexität. Um diese Herausforderung zu adressieren, wird eine neue Methodik abgeleitet, indem das zuvor eingeführte Resilienzrahmenwerk auf multidimensionale Anwendungsfälle erweitert und synergetisch mit einem etablierten Konzept aus der Zuverlässigkeitstheorie, der Überlebenssignatur, zusammengeführt wird. Der neue Ansatz kombiniert die Vorteile beider ursprünglichen Komponenten: Einerseits ermöglicht er einen direkten Vergleich verschiedener Resilienz-steigernder Maßnahmen aus einem mehrdimensionalen Suchraum, der zu einem optimalen Kompromiss in Bezug auf die Systemresilienz führt. Andererseits ermöglicht er durch die Separationseigenschaft der Überlebenssignatur eine signifikante Reduktion des Rechenaufwands. Sobald eine Subsystemstruktur berechnet wurde -- ein typischerweise rechenintensiver Prozess -- kann jede Charakterisierung des probabilistischen Ausfallverhaltens von Komponenten validiert werden, ohne dass die Struktur erneut berechnet werden muss. In der Realität sind Messungen, Expertenwissen sowie weitere Informationsquellen mit vielfältigen Unsicherheiten belastet. Hierfür wird eine effiziente Methode vorgeschlagen, die auf der Kombination von Überlebenssignatur, unscharfer Wahrscheinlichkeitstheorie und nicht-intrusiver stochastischer Simulation (NISS) basiert. Dadurch entsteht ein effizienter Ansatz zur Quantifizierung der Zuverlässigkeit komplexer Systeme unter Berücksichtigung des gesamten Unsicherheitsspektrums. Der neue Ansatz, der die vorteilhaften Eigenschaften seiner ursprünglichen Komponenten synergetisch zusammenführt, erreicht eine bedeutende Verringerung des Rechenaufwands aufgrund der Separationseigenschaft der Überlebenssignatur. Er erzielt zudem eine drastische Reduzierung der Stichprobengröße aufgrund der adaptierten NISS-Methode: Es wird nur eine einzige stochastische Simulation benötigt, um Unsicherheiten zu berücksichtigen. Die neue Methodik stellt nicht nur eine Neuerung auf dem Gebiet der Zuverlässigkeitsanalyse dar, sondern kann auch in das Resilienzrahmenwerk integriert werden. Für eine Resilienzanalyse von real existierenden Systemen ist die Berücksichtigung kontinuierlicher Komponentenfunktionalität unerlässlich. Diese wird in einer weiteren Neuentwicklung adressiert. Durch die Einführung der kontinuierlichen Überlebensfunktion und dem Konzept der Diagonal Approximated Signature als entsprechendes Ersatzmodell kann das bestehende Resilienzrahmenwerk sinnvoll erweitert werden, ohne seine grundlegenden Vorteile zu beeinträchtigen. Im Kontext der Regeneration komplexer Investitionsgüter wird ein umfassendes Analyserahmenwerk vorgestellt, um die Übertragbarkeit und Anwendbarkeit aller entwickelten Methoden auf komplexe Systeme jeglicher Art zu demonstrieren. Das Rahmenwerk integriert die zuvor entwickelten Methoden der Resilienz-, Zuverlässigkeits- und Unsicherheitsanalyse. Es bietet Entscheidungsträgern die Basis für die Identifikation resilienter Regenerationspfade in zweierlei Hinsicht: Zum einen im Sinne von Regenerationspfaden mit inhärenter Resilienz und zum anderen Regenerationspfade, die zu einer maximalen Systemresilienz unter Berücksichtigung technischer und monetärer Einflussgrößen des zu analysierenden komplexen Investitionsgutes führen. Zusammenfassend bietet diese Dissertation innovative Beiträge zur effizienten Resilienzanalyse und Entscheidungsfindung für komplexe Ingenieursysteme. Sie präsentiert universell anwendbare Methoden und Rahmenwerke, die flexibel genug sind, um beliebige Systemtypen und Leistungsmaße zu berücksichtigen. Dies wird in zahlreichen Fallstudien von willkürlichen Flussnetzwerken, funktionalen Modellen von Axialkompressoren bis hin zu substrukturierten Infrastruktursystemen mit mehreren tausend Einzelkomponenten demonstriert.

Ziele für nachhaltige Entwicklung

Zitieren

Efficient resilience analysis and decision-making for complex engineering systems. / Salomon, Julian.
Hannover, 2023. 233 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Salomon, J 2023, 'Efficient resilience analysis and decision-making for complex engineering systems', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/14355
Salomon, J. (2023). Efficient resilience analysis and decision-making for complex engineering systems. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/14355
Salomon J. Efficient resilience analysis and decision-making for complex engineering systems. Hannover, 2023. 233 S. doi: 10.15488/14355
Download
@phdthesis{efd42241b3104e0cba43270c51e33cae,
title = "Efficient resilience analysis and decision-making for complex engineering systems",
abstract = "Modern societies around the world are increasingly dependent on the smooth functionality of progressively more complex systems, such as infrastructure systems, digital systems like the internet, and sophisticated machinery. They form the cornerstones of our technologically advanced world and their efficiency is directly related to our well-being and the progress of society. However, these important systems are constantly exposed to a wide range of threats of natural, technological, and anthropogenic origin. The emergence of global crises such as the COVID-19 pandemic and the ongoing threat of climate change have starkly illustrated the vulnerability of these widely ramified and interdependent systems, as well as the impossibility of predicting threats entirely. The pandemic, with its widespread and unexpected impacts, demonstrated how an external shock can bring even the most advanced systems to a standstill, while the ongoing climate change continues to produce unprecedented risks to system stability and performance. These global crises underscore the need for systems that can not only withstand disruptions, but also, recover from them efficiently and rapidly. The concept of resilience and related developments encompass these requirements: analyzing, balancing, and optimizing the reliability, robustness, redundancy, adaptability, and recoverability of systems -- from both technical and economic perspectives. This cumulative dissertation, therefore, focuses on developing comprehensive and efficient tools for resilience-based analysis and decision-making of complex engineering systems. The newly developed resilience decision-making procedure is at the core of these developments. It is based on an adapted systemic risk measure, a time-dependent probabilistic resilience metric, as well as a grid search algorithm, and represents a significant innovation as it enables decision-makers to identify an optimal balance between different types of resilience-enhancing measures, taking into account monetary aspects. Increasingly, system components have significant inherent complexity, requiring them to be modeled as systems themselves. Thus, this leads to systems-of-systems with a high degree of complexity. To address this challenge, a novel methodology is derived by extending the previously introduced resilience framework to multidimensional use cases and synergistically merging it with an established concept from reliability theory, the survival signature. The new approach combines the advantages of both original components: a direct comparison of different resilience-enhancing measures from a multidimensional search space leading to an optimal trade-off in terms of system resilience, and a significant reduction in computational effort due to the separation property of the survival signature. It enables that once a subsystem structure has been computed -- a typically computational expensive process -- any characterization of the probabilistic failure behavior of components can be validated without having to recompute the structure. In reality, measurements, expert knowledge, and other sources of information are loaded with multiple uncertainties. For this purpose, an efficient method based on the combination of survival signature, fuzzy probability theory, and non-intrusive stochastic simulation (NISS) is proposed. This results in an efficient approach to quantify the reliability of complex systems, taking into account the entire uncertainty spectrum. The new approach, which synergizes the advantageous properties of its original components, achieves a significant decrease in computational effort due to the separation property of the survival signature. In addition, it attains a dramatic reduction in sample size due to the adapted NISS method: only a single stochastic simulation is required to account for uncertainties. The novel methodology not only represents an innovation in the field of reliability analysis, but can also be integrated into the resilience framework. For a resilience analysis of existing systems, the consideration of continuous component functionality is essential. This is addressed in a further novel development. By introducing the continuous survival function and the concept of the Diagonal Approximated Signature as a corresponding surrogate model, the existing resilience framework can be usefully extended without compromising its fundamental advantages. In the context of the regeneration of complex capital goods, a comprehensive analytical framework is presented to demonstrate the transferability and applicability of all developed methods to complex systems of any type. The framework integrates the previously developed resilience, reliability, and uncertainty analysis methods. It provides decision-makers with the basis for identifying resilient regeneration paths in two ways: first, in terms of regeneration paths with inherent resilience, and second, regeneration paths that lead to maximum system resilience, taking into account technical and monetary factors affecting the complex capital good under analysis. In summary, this dissertation offers innovative contributions to efficient resilience analysis and decision-making for complex engineering systems. It presents universally applicable methods and frameworks that are flexible enough to consider system types and performance measures of any kind. This is demonstrated in numerous case studies ranging from arbitrary flow networks, functional models of axial compressors to substructured infrastructure systems with several thousand individual components.",
author = "Julian Salomon",
year = "2023",
doi = "10.15488/14355",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Efficient resilience analysis and decision-making for complex engineering systems

AU - Salomon, Julian

PY - 2023

Y1 - 2023

N2 - Modern societies around the world are increasingly dependent on the smooth functionality of progressively more complex systems, such as infrastructure systems, digital systems like the internet, and sophisticated machinery. They form the cornerstones of our technologically advanced world and their efficiency is directly related to our well-being and the progress of society. However, these important systems are constantly exposed to a wide range of threats of natural, technological, and anthropogenic origin. The emergence of global crises such as the COVID-19 pandemic and the ongoing threat of climate change have starkly illustrated the vulnerability of these widely ramified and interdependent systems, as well as the impossibility of predicting threats entirely. The pandemic, with its widespread and unexpected impacts, demonstrated how an external shock can bring even the most advanced systems to a standstill, while the ongoing climate change continues to produce unprecedented risks to system stability and performance. These global crises underscore the need for systems that can not only withstand disruptions, but also, recover from them efficiently and rapidly. The concept of resilience and related developments encompass these requirements: analyzing, balancing, and optimizing the reliability, robustness, redundancy, adaptability, and recoverability of systems -- from both technical and economic perspectives. This cumulative dissertation, therefore, focuses on developing comprehensive and efficient tools for resilience-based analysis and decision-making of complex engineering systems. The newly developed resilience decision-making procedure is at the core of these developments. It is based on an adapted systemic risk measure, a time-dependent probabilistic resilience metric, as well as a grid search algorithm, and represents a significant innovation as it enables decision-makers to identify an optimal balance between different types of resilience-enhancing measures, taking into account monetary aspects. Increasingly, system components have significant inherent complexity, requiring them to be modeled as systems themselves. Thus, this leads to systems-of-systems with a high degree of complexity. To address this challenge, a novel methodology is derived by extending the previously introduced resilience framework to multidimensional use cases and synergistically merging it with an established concept from reliability theory, the survival signature. The new approach combines the advantages of both original components: a direct comparison of different resilience-enhancing measures from a multidimensional search space leading to an optimal trade-off in terms of system resilience, and a significant reduction in computational effort due to the separation property of the survival signature. It enables that once a subsystem structure has been computed -- a typically computational expensive process -- any characterization of the probabilistic failure behavior of components can be validated without having to recompute the structure. In reality, measurements, expert knowledge, and other sources of information are loaded with multiple uncertainties. For this purpose, an efficient method based on the combination of survival signature, fuzzy probability theory, and non-intrusive stochastic simulation (NISS) is proposed. This results in an efficient approach to quantify the reliability of complex systems, taking into account the entire uncertainty spectrum. The new approach, which synergizes the advantageous properties of its original components, achieves a significant decrease in computational effort due to the separation property of the survival signature. In addition, it attains a dramatic reduction in sample size due to the adapted NISS method: only a single stochastic simulation is required to account for uncertainties. The novel methodology not only represents an innovation in the field of reliability analysis, but can also be integrated into the resilience framework. For a resilience analysis of existing systems, the consideration of continuous component functionality is essential. This is addressed in a further novel development. By introducing the continuous survival function and the concept of the Diagonal Approximated Signature as a corresponding surrogate model, the existing resilience framework can be usefully extended without compromising its fundamental advantages. In the context of the regeneration of complex capital goods, a comprehensive analytical framework is presented to demonstrate the transferability and applicability of all developed methods to complex systems of any type. The framework integrates the previously developed resilience, reliability, and uncertainty analysis methods. It provides decision-makers with the basis for identifying resilient regeneration paths in two ways: first, in terms of regeneration paths with inherent resilience, and second, regeneration paths that lead to maximum system resilience, taking into account technical and monetary factors affecting the complex capital good under analysis. In summary, this dissertation offers innovative contributions to efficient resilience analysis and decision-making for complex engineering systems. It presents universally applicable methods and frameworks that are flexible enough to consider system types and performance measures of any kind. This is demonstrated in numerous case studies ranging from arbitrary flow networks, functional models of axial compressors to substructured infrastructure systems with several thousand individual components.

AB - Modern societies around the world are increasingly dependent on the smooth functionality of progressively more complex systems, such as infrastructure systems, digital systems like the internet, and sophisticated machinery. They form the cornerstones of our technologically advanced world and their efficiency is directly related to our well-being and the progress of society. However, these important systems are constantly exposed to a wide range of threats of natural, technological, and anthropogenic origin. The emergence of global crises such as the COVID-19 pandemic and the ongoing threat of climate change have starkly illustrated the vulnerability of these widely ramified and interdependent systems, as well as the impossibility of predicting threats entirely. The pandemic, with its widespread and unexpected impacts, demonstrated how an external shock can bring even the most advanced systems to a standstill, while the ongoing climate change continues to produce unprecedented risks to system stability and performance. These global crises underscore the need for systems that can not only withstand disruptions, but also, recover from them efficiently and rapidly. The concept of resilience and related developments encompass these requirements: analyzing, balancing, and optimizing the reliability, robustness, redundancy, adaptability, and recoverability of systems -- from both technical and economic perspectives. This cumulative dissertation, therefore, focuses on developing comprehensive and efficient tools for resilience-based analysis and decision-making of complex engineering systems. The newly developed resilience decision-making procedure is at the core of these developments. It is based on an adapted systemic risk measure, a time-dependent probabilistic resilience metric, as well as a grid search algorithm, and represents a significant innovation as it enables decision-makers to identify an optimal balance between different types of resilience-enhancing measures, taking into account monetary aspects. Increasingly, system components have significant inherent complexity, requiring them to be modeled as systems themselves. Thus, this leads to systems-of-systems with a high degree of complexity. To address this challenge, a novel methodology is derived by extending the previously introduced resilience framework to multidimensional use cases and synergistically merging it with an established concept from reliability theory, the survival signature. The new approach combines the advantages of both original components: a direct comparison of different resilience-enhancing measures from a multidimensional search space leading to an optimal trade-off in terms of system resilience, and a significant reduction in computational effort due to the separation property of the survival signature. It enables that once a subsystem structure has been computed -- a typically computational expensive process -- any characterization of the probabilistic failure behavior of components can be validated without having to recompute the structure. In reality, measurements, expert knowledge, and other sources of information are loaded with multiple uncertainties. For this purpose, an efficient method based on the combination of survival signature, fuzzy probability theory, and non-intrusive stochastic simulation (NISS) is proposed. This results in an efficient approach to quantify the reliability of complex systems, taking into account the entire uncertainty spectrum. The new approach, which synergizes the advantageous properties of its original components, achieves a significant decrease in computational effort due to the separation property of the survival signature. In addition, it attains a dramatic reduction in sample size due to the adapted NISS method: only a single stochastic simulation is required to account for uncertainties. The novel methodology not only represents an innovation in the field of reliability analysis, but can also be integrated into the resilience framework. For a resilience analysis of existing systems, the consideration of continuous component functionality is essential. This is addressed in a further novel development. By introducing the continuous survival function and the concept of the Diagonal Approximated Signature as a corresponding surrogate model, the existing resilience framework can be usefully extended without compromising its fundamental advantages. In the context of the regeneration of complex capital goods, a comprehensive analytical framework is presented to demonstrate the transferability and applicability of all developed methods to complex systems of any type. The framework integrates the previously developed resilience, reliability, and uncertainty analysis methods. It provides decision-makers with the basis for identifying resilient regeneration paths in two ways: first, in terms of regeneration paths with inherent resilience, and second, regeneration paths that lead to maximum system resilience, taking into account technical and monetary factors affecting the complex capital good under analysis. In summary, this dissertation offers innovative contributions to efficient resilience analysis and decision-making for complex engineering systems. It presents universally applicable methods and frameworks that are flexible enough to consider system types and performance measures of any kind. This is demonstrated in numerous case studies ranging from arbitrary flow networks, functional models of axial compressors to substructured infrastructure systems with several thousand individual components.

U2 - 10.15488/14355

DO - 10.15488/14355

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren