Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 165-177 |
Seitenumfang | 13 |
Fachzeitschrift | PEDOSPHERE |
Jahrgang | 22 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Apr. 2012 |
Extern publiziert | Ja |
Abstract
In te past few decades, the increase in grazing intensity has led to soil degradation and desertification in Inner Mongolia grassland, China, due to population growth and shift in the socio-economic system. Two sites with different grazing intensities, continuous grazing site (CG) with 1.2 sheep ha-1 year-1 and heavy grazing site (HG) with 2.0 sheep ha-1 year-1, were investigated at the Inner Mongolia Grassland Ecosystem Research Station (43° 37' 50' N, 116° 42' 18' E) situated in the northern China to i) characterize the temporal distribution of soil water content along soil profile; and ii) quantify the water fluxes as affected by grazing intensity. Soil water content was monitored by time domain reflectometry (TDR) probes. Soil water retention curves were determined by pressure membrane extractor, furthermore processed by RETC (RETention Curve) software. Soil matric potential, plant available water and water flux were calculated using these data. Both sites showed an identical seasonal soil water dynamics within four defined hydraulic periods: 1) wetting transition coincided with a dramatic water increase due to snow and frozen soil thawing from March to April; 2) wet summer, rainfall in accordance with plant growth from May to September; 3) drying transition, a decrease of soil water from October to November due to rainfall limit; and 4) dry winter, freezing from December to next February. Heavy grazing largely reduced soil water content by 43%-48% and plant available water by 46%-61% as compared to the CG site. During growing season net water flux was nearly similar between HG (242 mm) and CG (223 mm) sites between 5 and 20 cm depths. However, between 20 and 40 cm depths, the upward flux was more pronounced at HG site than at CG site, indicating that water was depleted by root uptake at HG site but stored at CG site. In semi-arid grassland ecosystem, grazing intensity can affect soil water regime and flux, particularly in the growing season.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: PEDOSPHERE, Jahrgang 22, Nr. 2, 04.2012, S. 165-177.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Effects of Grazing Intensity on Soil Water Regime and Flux in Inner Mongolia Grassland, China
AU - Gan, Lei
AU - Peng, Xin Hua
AU - Peth, S.
AU - Horn, R.
N1 - Funding Information: ∗1Supported by the German Research Foundation (DFG) (No. Forschergruppe 536), and the Hundred Talents Program of the Chinese Academy of Sciences. ∗2Corresponding author. E-mail: xhpeng@issas.ac.cn.
PY - 2012/4
Y1 - 2012/4
N2 - In te past few decades, the increase in grazing intensity has led to soil degradation and desertification in Inner Mongolia grassland, China, due to population growth and shift in the socio-economic system. Two sites with different grazing intensities, continuous grazing site (CG) with 1.2 sheep ha-1 year-1 and heavy grazing site (HG) with 2.0 sheep ha-1 year-1, were investigated at the Inner Mongolia Grassland Ecosystem Research Station (43° 37' 50' N, 116° 42' 18' E) situated in the northern China to i) characterize the temporal distribution of soil water content along soil profile; and ii) quantify the water fluxes as affected by grazing intensity. Soil water content was monitored by time domain reflectometry (TDR) probes. Soil water retention curves were determined by pressure membrane extractor, furthermore processed by RETC (RETention Curve) software. Soil matric potential, plant available water and water flux were calculated using these data. Both sites showed an identical seasonal soil water dynamics within four defined hydraulic periods: 1) wetting transition coincided with a dramatic water increase due to snow and frozen soil thawing from March to April; 2) wet summer, rainfall in accordance with plant growth from May to September; 3) drying transition, a decrease of soil water from October to November due to rainfall limit; and 4) dry winter, freezing from December to next February. Heavy grazing largely reduced soil water content by 43%-48% and plant available water by 46%-61% as compared to the CG site. During growing season net water flux was nearly similar between HG (242 mm) and CG (223 mm) sites between 5 and 20 cm depths. However, between 20 and 40 cm depths, the upward flux was more pronounced at HG site than at CG site, indicating that water was depleted by root uptake at HG site but stored at CG site. In semi-arid grassland ecosystem, grazing intensity can affect soil water regime and flux, particularly in the growing season.
AB - In te past few decades, the increase in grazing intensity has led to soil degradation and desertification in Inner Mongolia grassland, China, due to population growth and shift in the socio-economic system. Two sites with different grazing intensities, continuous grazing site (CG) with 1.2 sheep ha-1 year-1 and heavy grazing site (HG) with 2.0 sheep ha-1 year-1, were investigated at the Inner Mongolia Grassland Ecosystem Research Station (43° 37' 50' N, 116° 42' 18' E) situated in the northern China to i) characterize the temporal distribution of soil water content along soil profile; and ii) quantify the water fluxes as affected by grazing intensity. Soil water content was monitored by time domain reflectometry (TDR) probes. Soil water retention curves were determined by pressure membrane extractor, furthermore processed by RETC (RETention Curve) software. Soil matric potential, plant available water and water flux were calculated using these data. Both sites showed an identical seasonal soil water dynamics within four defined hydraulic periods: 1) wetting transition coincided with a dramatic water increase due to snow and frozen soil thawing from March to April; 2) wet summer, rainfall in accordance with plant growth from May to September; 3) drying transition, a decrease of soil water from October to November due to rainfall limit; and 4) dry winter, freezing from December to next February. Heavy grazing largely reduced soil water content by 43%-48% and plant available water by 46%-61% as compared to the CG site. During growing season net water flux was nearly similar between HG (242 mm) and CG (223 mm) sites between 5 and 20 cm depths. However, between 20 and 40 cm depths, the upward flux was more pronounced at HG site than at CG site, indicating that water was depleted by root uptake at HG site but stored at CG site. In semi-arid grassland ecosystem, grazing intensity can affect soil water regime and flux, particularly in the growing season.
KW - Heavy grazing
KW - Plant available water
KW - Semi-arid grassland
KW - Soil matric potential
KW - Soil water content
UR - http://www.scopus.com/inward/record.url?scp=84859756533&partnerID=8YFLogxK
U2 - 10.1016/S1002-0160(12)60003-4
DO - 10.1016/S1002-0160(12)60003-4
M3 - Article
AN - SCOPUS:84859756533
VL - 22
SP - 165
EP - 177
JO - PEDOSPHERE
JF - PEDOSPHERE
SN - 1002-0160
IS - 2
ER -