Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)532-543
Seitenumfang12
FachzeitschriftColloids and Surfaces A: Physicochemical and Engineering Aspects
Jahrgang520
Frühes Online-Datum3 Feb. 2017
PublikationsstatusVeröffentlicht - 5 Mai 2017

Abstract

Due to the complexity of flow conditions as well as solid matrix and colloid surface properties, solid knowledge about the transport of iron oxide colloids in soils remains scarce. In order to analyze the influence of flow conditions on iron oxide colloid transport and retention, breakthrough behavior of negatively charged, organic matter-coated goethite (OMCG) colloids in saturated quartz sand columns was investigated under continuous and stagnant flow conditions. Classic DLVO and extended DLVO (XDLVO) interaction energies including Lewis acid/base parameters were evaluated using measurements of sessile drop contact angles and zeta potentials of OMCG colloids and quartz. Results elucidated that under continuous flow conditions, OMCG colloids were highly mobile, which was in agreement with calculated unfavorable attachment conditions revealed by predictions of both DLVO approaches. In contrast, during intervals of flow interruption, significant amounts of OMCG colloids were retained in the solid matrix and could not be remobilized via re-establishment of flow. The magnitude of colloid retention increased with the duration of flow interruption; OMCG colloids were almost completely immobilized after 112 h. Further experiments were conducted in order to determine possible colloid retention mechanisms. Results indicated that the major cause for retention during flow stagnation was OMCG colloid capture at locations with attractive DLVO/XDLVO interactions, promoted by fast gravitational settling of colloids onto the solid matrix. We compared breakthrough curves to model predictions, where we demonstrated that an attachment term with a stagnant fluid switch was required in the mass balance in order to reproduce the measurements. We conclude that high mobility of OMCG colloids and prediction of that transport behavior with the applied DLVO approaches were only valid under continuous flow conditions. Under more discontinuous hydraulic conditions relevant in natural soils, such as flow interruption, OMCG colloid transport behavior was modified significantly.

ASJC Scopus Sachgebiete

Zitieren

Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand. / Carstens, Jannis F.; Bachmann, Jörg; Neuweiler, Insa.
in: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Jahrgang 520, 05.05.2017, S. 532-543.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{cbed1036dada4aa091edff967539961e,
title = "Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand",
abstract = "Due to the complexity of flow conditions as well as solid matrix and colloid surface properties, solid knowledge about the transport of iron oxide colloids in soils remains scarce. In order to analyze the influence of flow conditions on iron oxide colloid transport and retention, breakthrough behavior of negatively charged, organic matter-coated goethite (OMCG) colloids in saturated quartz sand columns was investigated under continuous and stagnant flow conditions. Classic DLVO and extended DLVO (XDLVO) interaction energies including Lewis acid/base parameters were evaluated using measurements of sessile drop contact angles and zeta potentials of OMCG colloids and quartz. Results elucidated that under continuous flow conditions, OMCG colloids were highly mobile, which was in agreement with calculated unfavorable attachment conditions revealed by predictions of both DLVO approaches. In contrast, during intervals of flow interruption, significant amounts of OMCG colloids were retained in the solid matrix and could not be remobilized via re-establishment of flow. The magnitude of colloid retention increased with the duration of flow interruption; OMCG colloids were almost completely immobilized after 112 h. Further experiments were conducted in order to determine possible colloid retention mechanisms. Results indicated that the major cause for retention during flow stagnation was OMCG colloid capture at locations with attractive DLVO/XDLVO interactions, promoted by fast gravitational settling of colloids onto the solid matrix. We compared breakthrough curves to model predictions, where we demonstrated that an attachment term with a stagnant fluid switch was required in the mass balance in order to reproduce the measurements. We conclude that high mobility of OMCG colloids and prediction of that transport behavior with the applied DLVO approaches were only valid under continuous flow conditions. Under more discontinuous hydraulic conditions relevant in natural soils, such as flow interruption, OMCG colloid transport behavior was modified significantly.",
keywords = "DLVO, Flow interruption, Iron oxide colloids",
author = "Carstens, {Jannis F.} and J{\"o}rg Bachmann and Insa Neuweiler",
year = "2017",
month = may,
day = "5",
doi = "10.1016/j.colsurfa.2017.02.003",
language = "English",
volume = "520",
pages = "532--543",
journal = "Colloids and Surfaces A: Physicochemical and Engineering Aspects",
issn = "0927-7757",
publisher = "Elsevier",

}

Download

TY - JOUR

T1 - Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand

AU - Carstens, Jannis F.

AU - Bachmann, Jörg

AU - Neuweiler, Insa

PY - 2017/5/5

Y1 - 2017/5/5

N2 - Due to the complexity of flow conditions as well as solid matrix and colloid surface properties, solid knowledge about the transport of iron oxide colloids in soils remains scarce. In order to analyze the influence of flow conditions on iron oxide colloid transport and retention, breakthrough behavior of negatively charged, organic matter-coated goethite (OMCG) colloids in saturated quartz sand columns was investigated under continuous and stagnant flow conditions. Classic DLVO and extended DLVO (XDLVO) interaction energies including Lewis acid/base parameters were evaluated using measurements of sessile drop contact angles and zeta potentials of OMCG colloids and quartz. Results elucidated that under continuous flow conditions, OMCG colloids were highly mobile, which was in agreement with calculated unfavorable attachment conditions revealed by predictions of both DLVO approaches. In contrast, during intervals of flow interruption, significant amounts of OMCG colloids were retained in the solid matrix and could not be remobilized via re-establishment of flow. The magnitude of colloid retention increased with the duration of flow interruption; OMCG colloids were almost completely immobilized after 112 h. Further experiments were conducted in order to determine possible colloid retention mechanisms. Results indicated that the major cause for retention during flow stagnation was OMCG colloid capture at locations with attractive DLVO/XDLVO interactions, promoted by fast gravitational settling of colloids onto the solid matrix. We compared breakthrough curves to model predictions, where we demonstrated that an attachment term with a stagnant fluid switch was required in the mass balance in order to reproduce the measurements. We conclude that high mobility of OMCG colloids and prediction of that transport behavior with the applied DLVO approaches were only valid under continuous flow conditions. Under more discontinuous hydraulic conditions relevant in natural soils, such as flow interruption, OMCG colloid transport behavior was modified significantly.

AB - Due to the complexity of flow conditions as well as solid matrix and colloid surface properties, solid knowledge about the transport of iron oxide colloids in soils remains scarce. In order to analyze the influence of flow conditions on iron oxide colloid transport and retention, breakthrough behavior of negatively charged, organic matter-coated goethite (OMCG) colloids in saturated quartz sand columns was investigated under continuous and stagnant flow conditions. Classic DLVO and extended DLVO (XDLVO) interaction energies including Lewis acid/base parameters were evaluated using measurements of sessile drop contact angles and zeta potentials of OMCG colloids and quartz. Results elucidated that under continuous flow conditions, OMCG colloids were highly mobile, which was in agreement with calculated unfavorable attachment conditions revealed by predictions of both DLVO approaches. In contrast, during intervals of flow interruption, significant amounts of OMCG colloids were retained in the solid matrix and could not be remobilized via re-establishment of flow. The magnitude of colloid retention increased with the duration of flow interruption; OMCG colloids were almost completely immobilized after 112 h. Further experiments were conducted in order to determine possible colloid retention mechanisms. Results indicated that the major cause for retention during flow stagnation was OMCG colloid capture at locations with attractive DLVO/XDLVO interactions, promoted by fast gravitational settling of colloids onto the solid matrix. We compared breakthrough curves to model predictions, where we demonstrated that an attachment term with a stagnant fluid switch was required in the mass balance in order to reproduce the measurements. We conclude that high mobility of OMCG colloids and prediction of that transport behavior with the applied DLVO approaches were only valid under continuous flow conditions. Under more discontinuous hydraulic conditions relevant in natural soils, such as flow interruption, OMCG colloid transport behavior was modified significantly.

KW - DLVO

KW - Flow interruption

KW - Iron oxide colloids

UR - http://www.scopus.com/inward/record.url?scp=85012289084&partnerID=8YFLogxK

U2 - 10.1016/j.colsurfa.2017.02.003

DO - 10.1016/j.colsurfa.2017.02.003

M3 - Article

AN - SCOPUS:85012289084

VL - 520

SP - 532

EP - 543

JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects

JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects

SN - 0927-7757

ER -

Von denselben Autoren