Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 551-568 |
Seitenumfang | 18 |
Fachzeitschrift | Contributions to Mineralogy and Petrology |
Jahrgang | 160 |
Ausgabenummer | 4 |
Frühes Online-Datum | 12 Feb. 2010 |
Publikationsstatus | Veröffentlicht - Okt. 2010 |
Abstract
The influence of oxygen fugacity and water on phase equilibria and the link between redox conditions and water activity were investigated experimentally using a primitive tholeiitic basalt composition relevant to the ocean crust. The crystallization experiments were performed in internally heated pressure vessels at 200 MPa in the temperature range 940-1,220°C. The oxygen fugacity was measured using the H2-membrane technique. To study the effect of oxygen fugacity, three sets of experiments with different hydrogen fugacities were performed, showing systematic effects on the phase relations and compositions. In each experimental series, the water content of the system was varied from nominally dry to water-saturated conditions, causing a range of oxygen fugacities varying by ~3 log units per series. The range in oxygen fugacity investigated spans ~7 log units. Systematic effects of oxygen fugacity on the stability and composition of the mafic silicate phases, Cr-spinel and Fe-Ti oxides, under varying water contents were recorded. The Mg# of the melt, and therefore also the Mg# of olivine and clinopyroxene, changed systematically as a function of oxygen fugacity. An example of the link between oxygen fugacity and water activity under hydrogen-buffered conditions is the change in the crystallization sequence (olivine and Cr-spinel) due to a change in the oxygen fugacity caused by an increase in the water activity. The stability of magnetite is restricted to highly oxidizing conditions. The absence of magnetite in most of the experiments allows the determination of differentiation trends as a function of oxygen fugacity and water content, demonstrating that in an oxide-free crystallization sequence, water systematically affects the differentiation trend, while oxygen fugacity seems to have a negligible effect.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Contributions to Mineralogy and Petrology, Jahrgang 160, Nr. 4, 10.2010, S. 551-568.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt
AU - Feig, Sandrin T.
AU - Koepke, Jürgen
AU - Snow, Jonathan E.
N1 - Funding Information: ODP is sponsored by the US National Science Fundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. The funding for this research was provided by a grant from the Deutsche Forschungsgemeinschaft (KO 1723/4-2). Jonathan E. Snow was supported by a Heisenberg Fellowship from the Deutsche Forschungsgemeinschaft.
PY - 2010/10
Y1 - 2010/10
N2 - The influence of oxygen fugacity and water on phase equilibria and the link between redox conditions and water activity were investigated experimentally using a primitive tholeiitic basalt composition relevant to the ocean crust. The crystallization experiments were performed in internally heated pressure vessels at 200 MPa in the temperature range 940-1,220°C. The oxygen fugacity was measured using the H2-membrane technique. To study the effect of oxygen fugacity, three sets of experiments with different hydrogen fugacities were performed, showing systematic effects on the phase relations and compositions. In each experimental series, the water content of the system was varied from nominally dry to water-saturated conditions, causing a range of oxygen fugacities varying by ~3 log units per series. The range in oxygen fugacity investigated spans ~7 log units. Systematic effects of oxygen fugacity on the stability and composition of the mafic silicate phases, Cr-spinel and Fe-Ti oxides, under varying water contents were recorded. The Mg# of the melt, and therefore also the Mg# of olivine and clinopyroxene, changed systematically as a function of oxygen fugacity. An example of the link between oxygen fugacity and water activity under hydrogen-buffered conditions is the change in the crystallization sequence (olivine and Cr-spinel) due to a change in the oxygen fugacity caused by an increase in the water activity. The stability of magnetite is restricted to highly oxidizing conditions. The absence of magnetite in most of the experiments allows the determination of differentiation trends as a function of oxygen fugacity and water content, demonstrating that in an oxide-free crystallization sequence, water systematically affects the differentiation trend, while oxygen fugacity seems to have a negligible effect.
AB - The influence of oxygen fugacity and water on phase equilibria and the link between redox conditions and water activity were investigated experimentally using a primitive tholeiitic basalt composition relevant to the ocean crust. The crystallization experiments were performed in internally heated pressure vessels at 200 MPa in the temperature range 940-1,220°C. The oxygen fugacity was measured using the H2-membrane technique. To study the effect of oxygen fugacity, three sets of experiments with different hydrogen fugacities were performed, showing systematic effects on the phase relations and compositions. In each experimental series, the water content of the system was varied from nominally dry to water-saturated conditions, causing a range of oxygen fugacities varying by ~3 log units per series. The range in oxygen fugacity investigated spans ~7 log units. Systematic effects of oxygen fugacity on the stability and composition of the mafic silicate phases, Cr-spinel and Fe-Ti oxides, under varying water contents were recorded. The Mg# of the melt, and therefore also the Mg# of olivine and clinopyroxene, changed systematically as a function of oxygen fugacity. An example of the link between oxygen fugacity and water activity under hydrogen-buffered conditions is the change in the crystallization sequence (olivine and Cr-spinel) due to a change in the oxygen fugacity caused by an increase in the water activity. The stability of magnetite is restricted to highly oxidizing conditions. The absence of magnetite in most of the experiments allows the determination of differentiation trends as a function of oxygen fugacity and water content, demonstrating that in an oxide-free crystallization sequence, water systematically affects the differentiation trend, while oxygen fugacity seems to have a negligible effect.
KW - Basalt
KW - Crystallization experiments
KW - Differentiation
KW - Oxygen fugacity
KW - Phase equilibria
KW - Water
UR - http://www.scopus.com/inward/record.url?scp=77956410258&partnerID=8YFLogxK
U2 - 10.1007/s00410-010-0493-3
DO - 10.1007/s00410-010-0493-3
M3 - Article
AN - SCOPUS:77956410258
VL - 160
SP - 551
EP - 568
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
SN - 0010-7999
IS - 4
ER -