Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 709-718 |
Seitenumfang | 10 |
Fachzeitschrift | Environmental chemistry |
Jahrgang | 11 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 2014 |
Abstract
Environmental context The supramolecular structure and resulting physicochemical properties of soil organic matter (SOM) significantly control storage and buffer functions of soils, e.g. for nutrients, organic molecules and water. Multivalent cations, able to form complexes, are suggested to form inter- and intramolecular cross-links in SOM. At present, specific effects of the valence and type of cation on SOM properties are incompletely understood. We investigated changes in SOM interfacial properties, its ability to release mobile colloids in aqueous solutions and its sorption affinity towards organic chemicals in dependence on cation-SOM interactions, temperature and aging time. Abstract The present study aims to improve our understanding on the effect of multivalent cations, temperature treatment and isothermal aging time on interfacial soil organic matter (SOM) properties as major factors that modify its supramolecular structures. A sandy topsoil (LW) and a peat soil (SP) were enriched with Na, Ca or Al, or desalinated in a batch experiment, treated at 25, 40, 60 and 105°C and aged at constant temperature and humidity (20°C, 31% relative humidity). After aging for different periods, contact angles (CAs), sorption properties towards xenobiotics and properties of water dispersible colloids were determined. With increasing valence of the dominant cations fewer and larger colloids were observed, probably attributable to cation cross-links or enhanced aggregation caused by reduced surface charge. Al-enrichment of LW resulted in more abundant or more accessible sorption sites for hydrophobic xenobiotics. But in contrast to expectations, hydrophilic sorption as well as wettability was not significantly affected by the type of adsorbed cation. Increasing the temperature had a major effect on surface properties resulting in rising surface hydrophobisation with increasing solid-water CAs, decreasing surface O/C ratio and decreasing sorption of hydrophilic substances; whereas systematic temperature effects on water dispersible colloids and on hydrophobic sorption were not detected. Aging was found to increase the initial CA of the 25°C treatment and to increase the sorption of phenanthrene to LW for all treatment temperatures. We conclude that aging of SOM is a process that changes surface properties and approaches a new equilibrium state after a disturbance. The aging process may be significantly accelerated for samples treated at elevated temperatures.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Chemie (sonstige)
- Umweltwissenschaften (insg.)
- Umweltchemie
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Environmental chemistry, Jahrgang 11, Nr. 6, 2014, S. 709-718.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Effect of multivalent cations, temperature and aging on soil organic matter interfacial properties
AU - Diehl, Dörte
AU - Schneckenburger, Tatjana
AU - Krüger, Jaane
AU - Göbel, Marc Oliver
AU - Woche, Susanne K.
AU - Schwarz, Jette
AU - Shchegolikhina, Anastasia
AU - Lang, Friederike
AU - Marschner, Bernd
AU - Thiele-Bruhn, Sören
AU - Bachmann, Jörg
AU - Schaumann, Gabriele E.
N1 - Publisher Copyright: © 2014 CSIRO. Copyright: Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2014
Y1 - 2014
N2 - Environmental context The supramolecular structure and resulting physicochemical properties of soil organic matter (SOM) significantly control storage and buffer functions of soils, e.g. for nutrients, organic molecules and water. Multivalent cations, able to form complexes, are suggested to form inter- and intramolecular cross-links in SOM. At present, specific effects of the valence and type of cation on SOM properties are incompletely understood. We investigated changes in SOM interfacial properties, its ability to release mobile colloids in aqueous solutions and its sorption affinity towards organic chemicals in dependence on cation-SOM interactions, temperature and aging time. Abstract The present study aims to improve our understanding on the effect of multivalent cations, temperature treatment and isothermal aging time on interfacial soil organic matter (SOM) properties as major factors that modify its supramolecular structures. A sandy topsoil (LW) and a peat soil (SP) were enriched with Na, Ca or Al, or desalinated in a batch experiment, treated at 25, 40, 60 and 105°C and aged at constant temperature and humidity (20°C, 31% relative humidity). After aging for different periods, contact angles (CAs), sorption properties towards xenobiotics and properties of water dispersible colloids were determined. With increasing valence of the dominant cations fewer and larger colloids were observed, probably attributable to cation cross-links or enhanced aggregation caused by reduced surface charge. Al-enrichment of LW resulted in more abundant or more accessible sorption sites for hydrophobic xenobiotics. But in contrast to expectations, hydrophilic sorption as well as wettability was not significantly affected by the type of adsorbed cation. Increasing the temperature had a major effect on surface properties resulting in rising surface hydrophobisation with increasing solid-water CAs, decreasing surface O/C ratio and decreasing sorption of hydrophilic substances; whereas systematic temperature effects on water dispersible colloids and on hydrophobic sorption were not detected. Aging was found to increase the initial CA of the 25°C treatment and to increase the sorption of phenanthrene to LW for all treatment temperatures. We conclude that aging of SOM is a process that changes surface properties and approaches a new equilibrium state after a disturbance. The aging process may be significantly accelerated for samples treated at elevated temperatures.
AB - Environmental context The supramolecular structure and resulting physicochemical properties of soil organic matter (SOM) significantly control storage and buffer functions of soils, e.g. for nutrients, organic molecules and water. Multivalent cations, able to form complexes, are suggested to form inter- and intramolecular cross-links in SOM. At present, specific effects of the valence and type of cation on SOM properties are incompletely understood. We investigated changes in SOM interfacial properties, its ability to release mobile colloids in aqueous solutions and its sorption affinity towards organic chemicals in dependence on cation-SOM interactions, temperature and aging time. Abstract The present study aims to improve our understanding on the effect of multivalent cations, temperature treatment and isothermal aging time on interfacial soil organic matter (SOM) properties as major factors that modify its supramolecular structures. A sandy topsoil (LW) and a peat soil (SP) were enriched with Na, Ca or Al, or desalinated in a batch experiment, treated at 25, 40, 60 and 105°C and aged at constant temperature and humidity (20°C, 31% relative humidity). After aging for different periods, contact angles (CAs), sorption properties towards xenobiotics and properties of water dispersible colloids were determined. With increasing valence of the dominant cations fewer and larger colloids were observed, probably attributable to cation cross-links or enhanced aggregation caused by reduced surface charge. Al-enrichment of LW resulted in more abundant or more accessible sorption sites for hydrophobic xenobiotics. But in contrast to expectations, hydrophilic sorption as well as wettability was not significantly affected by the type of adsorbed cation. Increasing the temperature had a major effect on surface properties resulting in rising surface hydrophobisation with increasing solid-water CAs, decreasing surface O/C ratio and decreasing sorption of hydrophilic substances; whereas systematic temperature effects on water dispersible colloids and on hydrophobic sorption were not detected. Aging was found to increase the initial CA of the 25°C treatment and to increase the sorption of phenanthrene to LW for all treatment temperatures. We conclude that aging of SOM is a process that changes surface properties and approaches a new equilibrium state after a disturbance. The aging process may be significantly accelerated for samples treated at elevated temperatures.
KW - colloids
KW - contact angle
KW - sorption
KW - X-ray photoelectron spectroscopy.
UR - http://www.scopus.com/inward/record.url?scp=84918509941&partnerID=8YFLogxK
U2 - 10.1071/en14008
DO - 10.1071/en14008
M3 - Article
AN - SCOPUS:84918509941
VL - 11
SP - 709
EP - 718
JO - Environmental chemistry
JF - Environmental chemistry
SN - 1448-2517
IS - 6
ER -