Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 112486 |
Seitenumfang | 10 |
Fachzeitschrift | Materials characterization |
Jahrgang | 195 |
Frühes Online-Datum | 17 Nov. 2022 |
Publikationsstatus | Veröffentlicht - Jan. 2023 |
Abstract
Fe–Mn–Si-based shape memory alloys (Fe-SMAs) have attracted much research attention due to their potential applications for vibration mitigation, energy dissipation, and re-centering in the construction sector. Because of the crucial impact of precipitation on the pseudoelasticity (PE) behavior of Fe-SMAs, the equilibrium phase diagram of an Fe–17Mn–5Si–10Cr–4Ni–1(V-C) (wt%) SMA was used in this study to identify a low-temperature precipitate and study its effect on the microstructure and PE of the alloy after a low-temperature aging process. Transmission electron microscopy (TEM) studies revealed that aging at 485 °C for 6 h after aging at 750 °C for 6 h led to the precipitation of fresh, parallelogram-shaped, (Cr–V–C)-rich precipitates along with elliptical-shaped, V-rich precipitates in the austenite grains of the recrystallized samples. Numerous parallel stacking faults (SFs) were formed due to the presence of the precipitates within the austenite grains. It is postulated that such an arrangement of SFs can further improve the PE by reducing the activation energy for the nucleation of ɛ-martensite laths and inhibiting them from colliding with each other and consequent formation of α'-martensite, resulting in a residual strain reduction to 2.7% after 4.0% tensile straining.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Materials characterization, Jahrgang 195, 112486, 01.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Effect of low-temperature precipitates on microstructure and pseudoelasticity of an Fe–Mn–Si-based shape memory alloy
AU - Khodaverdi, Hesamodin
AU - Mohri, Maryam
AU - Ghorabaei, Amir Sabet
AU - Ghafoori, Elyas
AU - Nili-Ahmadabadi, Mahmoud
N1 - Funding Information: The authors acknowledge the support from re-fer AG , Switzerland, for providing the material for this research study.
PY - 2023/1
Y1 - 2023/1
N2 - Fe–Mn–Si-based shape memory alloys (Fe-SMAs) have attracted much research attention due to their potential applications for vibration mitigation, energy dissipation, and re-centering in the construction sector. Because of the crucial impact of precipitation on the pseudoelasticity (PE) behavior of Fe-SMAs, the equilibrium phase diagram of an Fe–17Mn–5Si–10Cr–4Ni–1(V-C) (wt%) SMA was used in this study to identify a low-temperature precipitate and study its effect on the microstructure and PE of the alloy after a low-temperature aging process. Transmission electron microscopy (TEM) studies revealed that aging at 485 °C for 6 h after aging at 750 °C for 6 h led to the precipitation of fresh, parallelogram-shaped, (Cr–V–C)-rich precipitates along with elliptical-shaped, V-rich precipitates in the austenite grains of the recrystallized samples. Numerous parallel stacking faults (SFs) were formed due to the presence of the precipitates within the austenite grains. It is postulated that such an arrangement of SFs can further improve the PE by reducing the activation energy for the nucleation of ɛ-martensite laths and inhibiting them from colliding with each other and consequent formation of α'-martensite, resulting in a residual strain reduction to 2.7% after 4.0% tensile straining.
AB - Fe–Mn–Si-based shape memory alloys (Fe-SMAs) have attracted much research attention due to their potential applications for vibration mitigation, energy dissipation, and re-centering in the construction sector. Because of the crucial impact of precipitation on the pseudoelasticity (PE) behavior of Fe-SMAs, the equilibrium phase diagram of an Fe–17Mn–5Si–10Cr–4Ni–1(V-C) (wt%) SMA was used in this study to identify a low-temperature precipitate and study its effect on the microstructure and PE of the alloy after a low-temperature aging process. Transmission electron microscopy (TEM) studies revealed that aging at 485 °C for 6 h after aging at 750 °C for 6 h led to the precipitation of fresh, parallelogram-shaped, (Cr–V–C)-rich precipitates along with elliptical-shaped, V-rich precipitates in the austenite grains of the recrystallized samples. Numerous parallel stacking faults (SFs) were formed due to the presence of the precipitates within the austenite grains. It is postulated that such an arrangement of SFs can further improve the PE by reducing the activation energy for the nucleation of ɛ-martensite laths and inhibiting them from colliding with each other and consequent formation of α'-martensite, resulting in a residual strain reduction to 2.7% after 4.0% tensile straining.
KW - Equilibrium phase diagram
KW - Fe–Mn–Si-based shape memory alloy
KW - Precipitation
KW - Superelasticity
KW - Transmission electron microscopy
UR - http://www.scopus.com/inward/record.url?scp=85142711681&partnerID=8YFLogxK
U2 - 10.1016/j.matchar.2022.112486
DO - 10.1016/j.matchar.2022.112486
M3 - Article
AN - SCOPUS:85142711681
VL - 195
JO - Materials characterization
JF - Materials characterization
SN - 1044-5803
M1 - 112486
ER -