Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 141341 |
Fachzeitschrift | Science of the Total Environment |
Jahrgang | 748 |
Frühes Online-Datum | 2 Aug. 2020 |
Publikationsstatus | Veröffentlicht - 15 Dez. 2020 |
Abstract
Nutrient regulation is an important ecosystem regulating service in watersheds. However, systematic investigations of the spatial associations between the potential, flow, and demand of the nutrient regulation service are still lacking. Therefore, we performed a case study comparing the total phosphorus (TP) retention in the Dianchi Lake (DL) watershed (human-dominated) with that in the Lower Reach of the Zi River (LRZR) watershed (nature-dominated). We used four indicators-TP retention potential, TP retention, TP load, and TP export-to represent the potential, flow, demand, and flow-demand budget of the TP retention service, respectively. We estimated the TP retention and export using the InVEST tool, mapped the four TP indicators and calculated their correlations, and estimated the contributions of different ecosystem types and terrain ranges to TP retention and export. We determined the following: (1) the incongruity between the spatial distribution of the TP retention potential and the other three TP indicators was smaller in the LRZR watershed than in the DL watershed; (2) the TP retention potentials generally increased-while the other three TP indicators decreased-with increases in the elevation gradient in the DL watershed and the slope gradients in both study areas; and (3) paddy fields exhibited the highest TP retention intensity and residential areas exhibited the highest TP export intensity among the major ecosystem types in both study areas. Moreover, the TP retention intensities of dryland crops and residential areas in the DL watershed were much higher than they were in the LRZR watershed. Our findings imply that the flow of the nutrient retention service is influenced more by the service demand than by the service potential and that it is influenced by both landscape composition and pattern. Because of the limitations and uncertainties in the modeling outputs, our results should be carefully used in other studies or in decision-making.
ASJC Scopus Sachgebiete
- Umweltwissenschaften (insg.)
- Environmental engineering
- Umweltwissenschaften (insg.)
- Umweltchemie
- Umweltwissenschaften (insg.)
- Abfallwirtschaft und -entsorgung
- Umweltwissenschaften (insg.)
- Umweltverschmutzung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Science of the Total Environment, Jahrgang 748, 141341, 15.12.2020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Ecosystem service potential, flow, demand and their spatial associations
T2 - a comparison of the nutrient retention service between a human- and a nature-dominated watershed
AU - Hou, Ying
AU - Ding, Shoukang
AU - Chen, Weiping
AU - Li, Bo
AU - Burkhard, Benjamin
AU - Bicking, Sabine
AU - Müller, Felix
N1 - Funding information: This work was supported by the Chinese Ministry of Science and Technology ( 2017YFC0505702 ) and the Chinese Academy of Sciences ( QYZDB-SSW-DQC034 ). We thank Dr. Xuezheng Shi for providing us with the meta information about the soil data. We also thank the anonymous reviewers for their valuable comments and suggestions.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Nutrient regulation is an important ecosystem regulating service in watersheds. However, systematic investigations of the spatial associations between the potential, flow, and demand of the nutrient regulation service are still lacking. Therefore, we performed a case study comparing the total phosphorus (TP) retention in the Dianchi Lake (DL) watershed (human-dominated) with that in the Lower Reach of the Zi River (LRZR) watershed (nature-dominated). We used four indicators-TP retention potential, TP retention, TP load, and TP export-to represent the potential, flow, demand, and flow-demand budget of the TP retention service, respectively. We estimated the TP retention and export using the InVEST tool, mapped the four TP indicators and calculated their correlations, and estimated the contributions of different ecosystem types and terrain ranges to TP retention and export. We determined the following: (1) the incongruity between the spatial distribution of the TP retention potential and the other three TP indicators was smaller in the LRZR watershed than in the DL watershed; (2) the TP retention potentials generally increased-while the other three TP indicators decreased-with increases in the elevation gradient in the DL watershed and the slope gradients in both study areas; and (3) paddy fields exhibited the highest TP retention intensity and residential areas exhibited the highest TP export intensity among the major ecosystem types in both study areas. Moreover, the TP retention intensities of dryland crops and residential areas in the DL watershed were much higher than they were in the LRZR watershed. Our findings imply that the flow of the nutrient retention service is influenced more by the service demand than by the service potential and that it is influenced by both landscape composition and pattern. Because of the limitations and uncertainties in the modeling outputs, our results should be carefully used in other studies or in decision-making.
AB - Nutrient regulation is an important ecosystem regulating service in watersheds. However, systematic investigations of the spatial associations between the potential, flow, and demand of the nutrient regulation service are still lacking. Therefore, we performed a case study comparing the total phosphorus (TP) retention in the Dianchi Lake (DL) watershed (human-dominated) with that in the Lower Reach of the Zi River (LRZR) watershed (nature-dominated). We used four indicators-TP retention potential, TP retention, TP load, and TP export-to represent the potential, flow, demand, and flow-demand budget of the TP retention service, respectively. We estimated the TP retention and export using the InVEST tool, mapped the four TP indicators and calculated their correlations, and estimated the contributions of different ecosystem types and terrain ranges to TP retention and export. We determined the following: (1) the incongruity between the spatial distribution of the TP retention potential and the other three TP indicators was smaller in the LRZR watershed than in the DL watershed; (2) the TP retention potentials generally increased-while the other three TP indicators decreased-with increases in the elevation gradient in the DL watershed and the slope gradients in both study areas; and (3) paddy fields exhibited the highest TP retention intensity and residential areas exhibited the highest TP export intensity among the major ecosystem types in both study areas. Moreover, the TP retention intensities of dryland crops and residential areas in the DL watershed were much higher than they were in the LRZR watershed. Our findings imply that the flow of the nutrient retention service is influenced more by the service demand than by the service potential and that it is influenced by both landscape composition and pattern. Because of the limitations and uncertainties in the modeling outputs, our results should be carefully used in other studies or in decision-making.
KW - Ecosystem types
KW - Landscape pattern
KW - Pollution mitigation
KW - Spatial inconsistency
KW - Terrain gradient
KW - Total phosphorus
UR - http://www.scopus.com/inward/record.url?scp=85089497452&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.141341
DO - 10.1016/j.scitotenv.2020.141341
M3 - Article
C2 - 32823222
VL - 748
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
M1 - 141341
ER -