Loading [MathJax]/extensions/tex2jax.js

Domain-Decoupled Physics-informed Neural Networks with Closed-Form Gradients for Fast Model Learning of Dynamical Systems

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Details

Originalspracheundefiniert/unbekannt
Titel des SammelwerksProceedings of the 21st International Conference on Informatics in Control, Automation and Robotics
PublikationsstatusVeröffentlicht - 2024

Zitieren

Domain-Decoupled Physics-informed Neural Networks with Closed-Form Gradients for Fast Model Learning of Dynamical Systems. / Krauss, Henrik; Habich, Tim-Lukas; Bartholdt, Max et al.
Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics. 2024.

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Krauss H, Habich TL, Bartholdt M, Seel T, Schappler M. Domain-Decoupled Physics-informed Neural Networks with Closed-Form Gradients for Fast Model Learning of Dynamical Systems. in Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics. 2024 doi: 10.5220/0012935200003822
Krauss, Henrik ; Habich, Tim-Lukas ; Bartholdt, Max et al. / Domain-Decoupled Physics-informed Neural Networks with Closed-Form Gradients for Fast Model Learning of Dynamical Systems. Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics. 2024.
Download
@inproceedings{6395966788ab47bc936d0ed90d111122,
title = "Domain-Decoupled Physics-informed Neural Networks with Closed-Form Gradients for Fast Model Learning of Dynamical Systems",
author = "Henrik Krauss and Tim-Lukas Habich and Max Bartholdt and Thomas Seel and Moritz Schappler",
year = "2024",
doi = "10.5220/0012935200003822",
language = "Undefined/Unknown",
booktitle = "Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics",

}

Download

TY - GEN

T1 - Domain-Decoupled Physics-informed Neural Networks with Closed-Form Gradients for Fast Model Learning of Dynamical Systems

AU - Krauss, Henrik

AU - Habich, Tim-Lukas

AU - Bartholdt, Max

AU - Seel, Thomas

AU - Schappler, Moritz

PY - 2024

Y1 - 2024

UR - http://dx.doi.org/10.5220/0012935200003822

U2 - 10.5220/0012935200003822

DO - 10.5220/0012935200003822

M3 - Aufsatz in Konferenzband

BT - Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics

ER -

Von denselben Autoren