Disturbance feedback-based model predictive control in uncertain dynamic environments

Publikation: Beitrag in FachzeitschriftKonferenzaufsatz in FachzeitschriftForschungPeer-Review

Autoren

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)146-152
Seitenumfang7
FachzeitschriftIFAC-PapersOnLine
Jahrgang58
Ausgabenummer18
Frühes Online-Datum25 Sept. 2024
PublikationsstatusVeröffentlicht - 2024
Veranstaltung8th IFAC Conference on Nonlinear Model Predictive Control, NMPC 2024 - Kyoto, Japan
Dauer: 21 Aug. 202424 Aug. 2024

Abstract

This paper presents a robust MPC scheme for linear systems subject to time-varying, uncertain constraints that arise from uncertain environments. The predicted input sequence is parameterized over future environment states to guarantee constraint satisfaction despite an imprecise environment prediction and unknown evolution of the future constraints. We provide theoretical guarantees for recursive feasibility and asymptotic convergence. Finally, a brief simulation example showcases our results.

ASJC Scopus Sachgebiete

Zitieren

Disturbance feedback-based model predictive control in uncertain dynamic environments. / Buschermöhle, Philipp; Jouini, Taouba; Lilge, Torsten et al.
in: IFAC-PapersOnLine, Jahrgang 58, Nr. 18, 2024, S. 146-152.

Publikation: Beitrag in FachzeitschriftKonferenzaufsatz in FachzeitschriftForschungPeer-Review

Buschermöhle P, Jouini T, Lilge T, Müller MA. Disturbance feedback-based model predictive control in uncertain dynamic environments. IFAC-PapersOnLine. 2024;58(18):146-152. Epub 2024 Sep 25. doi: 10.48550/arXiv.2404.09893, 10.1016/j.ifacol.2024.09.023
Buschermöhle, Philipp ; Jouini, Taouba ; Lilge, Torsten et al. / Disturbance feedback-based model predictive control in uncertain dynamic environments. in: IFAC-PapersOnLine. 2024 ; Jahrgang 58, Nr. 18. S. 146-152.
Download
@article{f399eed0ff2648fab4217fc00b09f03a,
title = "Disturbance feedback-based model predictive control in uncertain dynamic environments",
abstract = "This paper presents a robust MPC scheme for linear systems subject to time-varying, uncertain constraints that arise from uncertain environments. The predicted input sequence is parameterized over future environment states to guarantee constraint satisfaction despite an imprecise environment prediction and unknown evolution of the future constraints. We provide theoretical guarantees for recursive feasibility and asymptotic convergence. Finally, a brief simulation example showcases our results.",
keywords = "Disturbance Feedback, Model Predictive Control, Time-Varying Constraints",
author = "Philipp Buscherm{\"o}hle and Taouba Jouini and Torsten Lilge and M{\"u}ller, {Matthias A.}",
note = "Publisher Copyright: Copyright {\textcopyright} 2024 The Authors.; 8th IFAC Conference on Nonlinear Model Predictive Control, NMPC 2024 ; Conference date: 21-08-2024 Through 24-08-2024",
year = "2024",
doi = "10.48550/arXiv.2404.09893",
language = "English",
volume = "58",
pages = "146--152",
number = "18",

}

Download

TY - JOUR

T1 - Disturbance feedback-based model predictive control in uncertain dynamic environments

AU - Buschermöhle, Philipp

AU - Jouini, Taouba

AU - Lilge, Torsten

AU - Müller, Matthias A.

N1 - Publisher Copyright: Copyright © 2024 The Authors.

PY - 2024

Y1 - 2024

N2 - This paper presents a robust MPC scheme for linear systems subject to time-varying, uncertain constraints that arise from uncertain environments. The predicted input sequence is parameterized over future environment states to guarantee constraint satisfaction despite an imprecise environment prediction and unknown evolution of the future constraints. We provide theoretical guarantees for recursive feasibility and asymptotic convergence. Finally, a brief simulation example showcases our results.

AB - This paper presents a robust MPC scheme for linear systems subject to time-varying, uncertain constraints that arise from uncertain environments. The predicted input sequence is parameterized over future environment states to guarantee constraint satisfaction despite an imprecise environment prediction and unknown evolution of the future constraints. We provide theoretical guarantees for recursive feasibility and asymptotic convergence. Finally, a brief simulation example showcases our results.

KW - Disturbance Feedback

KW - Model Predictive Control

KW - Time-Varying Constraints

UR - http://www.scopus.com/inward/record.url?scp=85206092433&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2404.09893

DO - 10.48550/arXiv.2404.09893

M3 - Conference article

AN - SCOPUS:85206092433

VL - 58

SP - 146

EP - 152

JO - IFAC-PapersOnLine

JF - IFAC-PapersOnLine

SN - 2405-8971

IS - 18

T2 - 8th IFAC Conference on Nonlinear Model Predictive Control, NMPC 2024

Y2 - 21 August 2024 through 24 August 2024

ER -

Von denselben Autoren