Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1641-1646 |
Seitenumfang | 6 |
Fachzeitschrift | Procedia Engineering |
Jahrgang | 199 |
Publikationsstatus | Veröffentlicht - 2017 |
Extern publiziert | Ja |
Veranstaltung | 10th International Conference on Structural Dynamics, EURODYN 2017 - Rome, Italien Dauer: 10 Sept. 2017 → 13 Sept. 2017 |
Abstract
Multi-mode wind response control of chimneys on flexible foundation is studied. The multi-mode control is achieved using distributed multiple tuned mass dampers (d-MTMDs). A reinforced concrete (RC) chimney is considered as an assemblage of beam elements, each assumed to have constant diameter over the element length, and soil-structure interaction (SSI) is duly accounted for. The soil is idealized in single strata beneath the foundation, which consist of annular raft foundation having the internal and external diameter 15 m and 40 m, respectively and having depth of 2.5 m. The raft and the surrounding soil are modeled considering frequency independent constants for the springs and dashpots. The time domain wind analysis based on Newmark's method of average acceleration is employed for the non-classically damped system. The performance of the d-MTMDs is compared with the case of single tuned mass damper (STMD), d-MTMDs controlling the fundamental modal responses (d-MTMDs-1), and arbitrarily installed distributed MTMDs (ad-MTMDs). The displacement and acceleration response at the top of the chimney under wind forces are computed to study the effectiveness in the STMD, d-MTMDs-1, ad-MTMDs, and d-MTMDs cases. It is concluded that the d-MTMDs are more effective than the STMD, d-MTMDs-1, and ad-MTMDs, while considering equal total mass of the TMD(s). Furthermore, the soil type greatly affects the design parameters of the STMD/ d-MTMDs-1/ ad-MTMDs/ d-MTMDs, and wind response of the chimney with flexible foundation.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Procedia Engineering, Jahrgang 199, 2017, S. 1641-1646.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Distributed Multiple Tuned Mass Dampers for Wind Response Control of Chimney with Flexible Foundation
AU - Elias, Said
AU - Matsagar, Vasant
AU - Datta, T. K.
N1 - Publisher Copyright: © 2017 The Authors. Published by Elsevier Ltd.
PY - 2017
Y1 - 2017
N2 - Multi-mode wind response control of chimneys on flexible foundation is studied. The multi-mode control is achieved using distributed multiple tuned mass dampers (d-MTMDs). A reinforced concrete (RC) chimney is considered as an assemblage of beam elements, each assumed to have constant diameter over the element length, and soil-structure interaction (SSI) is duly accounted for. The soil is idealized in single strata beneath the foundation, which consist of annular raft foundation having the internal and external diameter 15 m and 40 m, respectively and having depth of 2.5 m. The raft and the surrounding soil are modeled considering frequency independent constants for the springs and dashpots. The time domain wind analysis based on Newmark's method of average acceleration is employed for the non-classically damped system. The performance of the d-MTMDs is compared with the case of single tuned mass damper (STMD), d-MTMDs controlling the fundamental modal responses (d-MTMDs-1), and arbitrarily installed distributed MTMDs (ad-MTMDs). The displacement and acceleration response at the top of the chimney under wind forces are computed to study the effectiveness in the STMD, d-MTMDs-1, ad-MTMDs, and d-MTMDs cases. It is concluded that the d-MTMDs are more effective than the STMD, d-MTMDs-1, and ad-MTMDs, while considering equal total mass of the TMD(s). Furthermore, the soil type greatly affects the design parameters of the STMD/ d-MTMDs-1/ ad-MTMDs/ d-MTMDs, and wind response of the chimney with flexible foundation.
AB - Multi-mode wind response control of chimneys on flexible foundation is studied. The multi-mode control is achieved using distributed multiple tuned mass dampers (d-MTMDs). A reinforced concrete (RC) chimney is considered as an assemblage of beam elements, each assumed to have constant diameter over the element length, and soil-structure interaction (SSI) is duly accounted for. The soil is idealized in single strata beneath the foundation, which consist of annular raft foundation having the internal and external diameter 15 m and 40 m, respectively and having depth of 2.5 m. The raft and the surrounding soil are modeled considering frequency independent constants for the springs and dashpots. The time domain wind analysis based on Newmark's method of average acceleration is employed for the non-classically damped system. The performance of the d-MTMDs is compared with the case of single tuned mass damper (STMD), d-MTMDs controlling the fundamental modal responses (d-MTMDs-1), and arbitrarily installed distributed MTMDs (ad-MTMDs). The displacement and acceleration response at the top of the chimney under wind forces are computed to study the effectiveness in the STMD, d-MTMDs-1, ad-MTMDs, and d-MTMDs cases. It is concluded that the d-MTMDs are more effective than the STMD, d-MTMDs-1, and ad-MTMDs, while considering equal total mass of the TMD(s). Furthermore, the soil type greatly affects the design parameters of the STMD/ d-MTMDs-1/ ad-MTMDs/ d-MTMDs, and wind response of the chimney with flexible foundation.
KW - Chimney
KW - Distributed multiple tuned mass dampers (d-MTMDs)
KW - Soil-structure interaction (SSI)
UR - http://www.scopus.com/inward/record.url?scp=85029910477&partnerID=8YFLogxK
U2 - 10.1016/j.proeng.2017.09.087
DO - 10.1016/j.proeng.2017.09.087
M3 - Conference article
AN - SCOPUS:85029910477
VL - 199
SP - 1641
EP - 1646
JO - Procedia Engineering
JF - Procedia Engineering
SN - 1877-7058
T2 - 10th International Conference on Structural Dynamics, EURODYN 2017
Y2 - 10 September 2017 through 13 September 2017
ER -