Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 062001 |
Seitenumfang | 14 |
Fachzeitschrift | Physical Review D |
Jahrgang | 100 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 4 Sept. 2019 |
Abstract
We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ<(0.05-25)×10-8 erg cm-2 s-1 Hz-1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at ωα(Θ)<(0.19-2.89)×10-8 sr-1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5-3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0<(3.6-4.7)×10-25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review D, Jahrgang 100, Nr. 6, 062001, 04.09.2019.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung
}
TY - JOUR
T1 - Directional limits on persistent gravitational waves using data from Advanced LIGO’s first two observing runs
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, G.
AU - Allocca, A.
AU - Aloy, M. A.
AU - Altin, P. A.
AU - Amato, A.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Angelova, S. V.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Arnaud, N.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - Aufmuth, P.
AU - Danilishin, S. L.
AU - Danzmann, K.
AU - Heurs, M.
AU - Hreibi, A.
AU - Lück, H.
AU - Steinmeyer, D.
AU - Vahlbruch, H.
AU - Wei, L.-w.
AU - Wilken, D. M.
AU - Willke, B.
AU - Wittel, H.
AU - Bose, Sukanta
AU - Brown, D. D.
AU - Chen, Y. B.
AU - Hanke, Manuela
AU - Hennig, J.
AU - Hübner, M. T.
AU - Kumar, Sanjeev
AU - Lang, R. N.
AU - Lee, H. K.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Li, X.
AU - Sanders, J. R.
AU - Schmidt, Patricia
AU - Sun, L.
AU - Wang, Y. F.
AU - Wu, D. S.
AU - Zhang, L.
AU - Zhou, Minchuan
AU - Zhu, X. J.
AU - Bergmann, Gerald
AU - Bisht, Aparna
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, Marc
AU - Cabero, M.
AU - de Varona, O.
AU - Hochheim, S.
AU - Junker, J.
AU - Kaufer, Stefan
AU - Kirchhoff, R.
AU - Koch, Patrick
AU - Koper, N.
AU - Köhlenbeck, S. M.
AU - Kringel, Volker
AU - Karvinen, Kai S.
AU - Khan, S.
AU - Kringel, Volker
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Lough, James
AU - Mehmet, Moritz
AU - Mukherjee, Arunava
AU - Mukund, Nikhil
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Rüdiger, A.
AU - Phelps, M.
AU - Thies, Fabian
AU - Schreiber, Emil
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Steinke, M.
AU - Standke, M.
AU - Weinert, Michael
AU - Wellmann, F.
AU - Weßels, Peter
AU - Winkler, W.
AU - Woehler, J.
N1 - Funding Information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.
PY - 2019/9/4
Y1 - 2019/9/4
N2 - We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ<(0.05-25)×10-8 erg cm-2 s-1 Hz-1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at ωα(Θ)<(0.19-2.89)×10-8 sr-1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5-3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0<(3.6-4.7)×10-25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.
AB - We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ<(0.05-25)×10-8 erg cm-2 s-1 Hz-1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at ωα(Θ)<(0.19-2.89)×10-8 sr-1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5-3× over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0<(3.6-4.7)×10-25, 1.5× better than previous limits set with the same analysis method. We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data.
UR - http://www.scopus.com/inward/record.url?scp=85073009115&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.100.062001
DO - 10.1103/PhysRevD.100.062001
M3 - Article
VL - 100
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 6
M1 - 062001
ER -