Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 106-109 |
Seitenumfang | 4 |
Fachzeitschrift | Manufacturing Letters |
Jahrgang | 31 |
Frühes Online-Datum | 20 Aug. 2021 |
Publikationsstatus | Veröffentlicht - Jan. 2022 |
Extern publiziert | Ja |
Abstract
This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Manufacturing Letters, Jahrgang 31, 01.2022, S. 106-109.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Direct laser heating of the filament/substrate interface in digital glass forming
AU - Capps, Nicholas E.
AU - Goldstein, Jonathan T.
AU - Rettschlag, Katharina
AU - Sleiman, Khodor
AU - Jaeschke, Peter
AU - Kaierle, Stefan
AU - Kinzel, Edward C.
N1 - Funding Information: The authors gratefully acknowledge support from NSF (CMMI 1653792, CMMI 1947391) and from the Air Force Research Laboratory.
PY - 2022/1
Y1 - 2022/1
N2 - This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.
AB - This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.
KW - Additive manufacturing
KW - Glass
KW - Laser processing
UR - http://www.scopus.com/inward/record.url?scp=85114681487&partnerID=8YFLogxK
U2 - 10.1016/j.mfglet.2021.08.005
DO - 10.1016/j.mfglet.2021.08.005
M3 - Article
AN - SCOPUS:85114681487
VL - 31
SP - 106
EP - 109
JO - Manufacturing Letters
JF - Manufacturing Letters
SN - 2213-8463
ER -