Direct laser heating of the filament/substrate interface in digital glass forming

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Nicholas E. Capps
  • Jonathan T. Goldstein
  • Katharina Rettschlag
  • Khodor Sleiman
  • Peter Jaeschke
  • Stefan Kaierle
  • Edward C. Kinzel

Externe Organisationen

  • University of Notre Dame
  • U.S. Air Force Research Laboratory (AFRL)
  • Laser Zentrum Hannover e.V. (LZH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)106-109
Seitenumfang4
FachzeitschriftManufacturing Letters
Jahrgang31
Frühes Online-Datum20 Aug. 2021
PublikationsstatusVeröffentlicht - Jan. 2022
Extern publiziertJa

Abstract

This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.

ASJC Scopus Sachgebiete

Zitieren

Direct laser heating of the filament/substrate interface in digital glass forming. / Capps, Nicholas E.; Goldstein, Jonathan T.; Rettschlag, Katharina et al.
in: Manufacturing Letters, Jahrgang 31, 01.2022, S. 106-109.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Capps, NE, Goldstein, JT, Rettschlag, K, Sleiman, K, Jaeschke, P, Kaierle, S & Kinzel, EC 2022, 'Direct laser heating of the filament/substrate interface in digital glass forming', Manufacturing Letters, Jg. 31, S. 106-109. https://doi.org/10.1016/j.mfglet.2021.08.005
Capps, N. E., Goldstein, J. T., Rettschlag, K., Sleiman, K., Jaeschke, P., Kaierle, S., & Kinzel, E. C. (2022). Direct laser heating of the filament/substrate interface in digital glass forming. Manufacturing Letters, 31, 106-109. https://doi.org/10.1016/j.mfglet.2021.08.005
Capps NE, Goldstein JT, Rettschlag K, Sleiman K, Jaeschke P, Kaierle S et al. Direct laser heating of the filament/substrate interface in digital glass forming. Manufacturing Letters. 2022 Jan;31:106-109. Epub 2021 Aug 20. doi: 10.1016/j.mfglet.2021.08.005
Capps, Nicholas E. ; Goldstein, Jonathan T. ; Rettschlag, Katharina et al. / Direct laser heating of the filament/substrate interface in digital glass forming. in: Manufacturing Letters. 2022 ; Jahrgang 31. S. 106-109.
Download
@article{a5516a2c1d744accafcd6353c322a9fe,
title = "Direct laser heating of the filament/substrate interface in digital glass forming",
abstract = "This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.",
keywords = "Additive manufacturing, Glass, Laser processing",
author = "Capps, {Nicholas E.} and Goldstein, {Jonathan T.} and Katharina Rettschlag and Khodor Sleiman and Peter Jaeschke and Stefan Kaierle and Kinzel, {Edward C.}",
note = "Funding Information: The authors gratefully acknowledge support from NSF (CMMI 1653792, CMMI 1947391) and from the Air Force Research Laboratory.",
year = "2022",
month = jan,
doi = "10.1016/j.mfglet.2021.08.005",
language = "English",
volume = "31",
pages = "106--109",

}

Download

TY - JOUR

T1 - Direct laser heating of the filament/substrate interface in digital glass forming

AU - Capps, Nicholas E.

AU - Goldstein, Jonathan T.

AU - Rettschlag, Katharina

AU - Sleiman, Khodor

AU - Jaeschke, Peter

AU - Kaierle, Stefan

AU - Kinzel, Edward C.

N1 - Funding Information: The authors gratefully acknowledge support from NSF (CMMI 1653792, CMMI 1947391) and from the Air Force Research Laboratory.

PY - 2022/1

Y1 - 2022/1

N2 - This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.

AB - This paper investigates the Digital Glass Forming (DGF) process for printing transparent fully-dense borosilicate structures. In this process, glass is deposited by laser heating the intersection of a continuously fed filament with the workpiece. The laser provides control of the surface temperature but thermal diffusion through a low-thermal conductivity filament limits deposition rates. Introducing the laser from the side is shown to deliver energy directly to the glass that will form the interface with the workpiece. This permits the filament to deform the molten zone and significantly improves deposition rates.

KW - Additive manufacturing

KW - Glass

KW - Laser processing

UR - http://www.scopus.com/inward/record.url?scp=85114681487&partnerID=8YFLogxK

U2 - 10.1016/j.mfglet.2021.08.005

DO - 10.1016/j.mfglet.2021.08.005

M3 - Article

AN - SCOPUS:85114681487

VL - 31

SP - 106

EP - 109

JO - Manufacturing Letters

JF - Manufacturing Letters

SN - 2213-8463

ER -