Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 207-229 |
Seitenumfang | 23 |
Fachzeitschrift | Bulletin de la Societe Royale des Sciences de Liege |
Jahrgang | 70 |
Ausgabenummer | 4-6 |
Publikationsstatus | Veröffentlicht - 2001 |
Extern publiziert | Ja |
Abstract
We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Clément and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Bulletin de la Societe Royale des Sciences de Liege, Jahrgang 70, Nr. 4-6, 2001, S. 207-229.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Differential operators on conic manifolds
T2 - Maximal regularity and parabolic equations
AU - Coriasco, S.
AU - Schrohe, E.
AU - Seiler, J.
N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2001
Y1 - 2001
N2 - We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Clément and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.
AB - We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Clément and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.
KW - Manifolds with conical singularities
KW - Quasilinear parabolic equations
UR - http://www.scopus.com/inward/record.url?scp=0035738657&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0035738657
VL - 70
SP - 207
EP - 229
JO - Bulletin de la Societe Royale des Sciences de Liege
JF - Bulletin de la Societe Royale des Sciences de Liege
SN - 0037-9565
IS - 4-6
ER -