Differential operators on conic manifolds: Maximal regularity and parabolic equations

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • S. Coriasco
  • E. Schrohe
  • J. Seiler

Externe Organisationen

  • Università di Torino
  • Universität Potsdam
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)207-229
Seitenumfang23
FachzeitschriftBulletin de la Societe Royale des Sciences de Liege
Jahrgang70
Ausgabenummer4-6
PublikationsstatusVeröffentlicht - 2001
Extern publiziertJa

Abstract

We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Clément and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.

ASJC Scopus Sachgebiete

Zitieren

Differential operators on conic manifolds: Maximal regularity and parabolic equations. / Coriasco, S.; Schrohe, E.; Seiler, J.
in: Bulletin de la Societe Royale des Sciences de Liege, Jahrgang 70, Nr. 4-6, 2001, S. 207-229.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Coriasco, S, Schrohe, E & Seiler, J 2001, 'Differential operators on conic manifolds: Maximal regularity and parabolic equations', Bulletin de la Societe Royale des Sciences de Liege, Jg. 70, Nr. 4-6, S. 207-229. <https://arxiv.org/pdf/math/0201184>
Coriasco, S., Schrohe, E., & Seiler, J. (2001). Differential operators on conic manifolds: Maximal regularity and parabolic equations. Bulletin de la Societe Royale des Sciences de Liege, 70(4-6), 207-229. https://arxiv.org/pdf/math/0201184
Coriasco S, Schrohe E, Seiler J. Differential operators on conic manifolds: Maximal regularity and parabolic equations. Bulletin de la Societe Royale des Sciences de Liege. 2001;70(4-6):207-229.
Coriasco, S. ; Schrohe, E. ; Seiler, J. / Differential operators on conic manifolds : Maximal regularity and parabolic equations. in: Bulletin de la Societe Royale des Sciences de Liege. 2001 ; Jahrgang 70, Nr. 4-6. S. 207-229.
Download
@article{8a5d3c4bf1ea4f56b7f0ad425562c29b,
title = "Differential operators on conic manifolds: Maximal regularity and parabolic equations",
abstract = "We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Cl{\'e}ment and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.",
keywords = "Manifolds with conical singularities, Quasilinear parabolic equations",
author = "S. Coriasco and E. Schrohe and J. Seiler",
note = "Copyright: Copyright 2008 Elsevier B.V., All rights reserved.",
year = "2001",
language = "English",
volume = "70",
pages = "207--229",
number = "4-6",

}

Download

TY - JOUR

T1 - Differential operators on conic manifolds

T2 - Maximal regularity and parabolic equations

AU - Coriasco, S.

AU - Schrohe, E.

AU - Seiler, J.

N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.

PY - 2001

Y1 - 2001

N2 - We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Clément and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.

AB - We study an elliptic differential operator A on a manifold with conic points. Assuming A to be defined on the smooth functions supported away from the singularities, we first address the question of possible closed extensions of A to Lp Sobolev spaces and then explain how additional ellipticity conditions ensure maximal regularity for the operator A. Investigating the Lipschitz continuity of the maps f(u) = |u|α, α ≥ 1, and f(u) = uα, α ∈ N, and using a result of Clément and Li, we finally show unique solvability of a quasilinear equation of the form (∂t - a(u)Δ)u = f(u) in suitable spaces.

KW - Manifolds with conical singularities

KW - Quasilinear parabolic equations

UR - http://www.scopus.com/inward/record.url?scp=0035738657&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0035738657

VL - 70

SP - 207

EP - 229

JO - Bulletin de la Societe Royale des Sciences de Liege

JF - Bulletin de la Societe Royale des Sciences de Liege

SN - 0037-9565

IS - 4-6

ER -