Development of high-resolution 3D geological subsurface models based on airborne electromagnetic data: case studies from the Cuxhaven tunnel valley and the Lutter anticline, northern Germany

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Dominik Steinmetz

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades16 Juli 2019
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2019

Abstract

Die Aeroelektromagnetik (AEM) ist eine effiziente Methode für geophysikalische Untersuchungen im Bereich des oberflächennahen Untergrundes und wurde erfolgreich in verschiedenen geologischen Räumen getestet, um u. a. die Ablagerungsarchitektur des Untergrundes hinsichtlich grundwasserwirtschaftlicher Fragestellungen zu untersuchen. Jedoch ist die Interpretation der AEM-Daten oftmals auf 1D Inversionsergebnisse begrenzt, die anhand von 2D Widerstandskarten und Profilschnitten dargestellt werden. Die Integration der durch die Aeroelektromagnetik gewonnenen geophysikalischen Daten mit geologischen Daten fehlt oftmals und führt zu Unsicherheiten in der Interpretation. Das Ziel der vorliegenden Arbeit ist es eine verbesserte Methode für die geologische Interpretation von AEM Daten zur Erstellung von möglichst wirklichkeitsgetreuen 3D Untergrundmodellen bereitzustellen. Die Methodik basiert auf der Entwicklung integrierter Arbeitsabläufe und 3D Modellierungsansätzen mit Hilfe der Modellierungssoftware GOCAD® von Paradigm und beruht auf der Kombination verschiedener geophysikalischer und geologischer Datensätze (Aeroelektromagnetik, Karten des Geotektonischen Atlas 3D, 2D reflektionsseismische Profile und Bohrdaten). Anhand der geostatistischen Analyse und Interpolation bestehender aeroelektromagnetischer 1D Inversionsergebnisse wurden 3D Widerstandsmodelle des Untergrundes erstellt. Diese wurden anschließend durch Integration geologischer Kartenwerke, Bohrdaten, seismischer Profile und hochauflösender topographischer Karten geologisch interpretiert. Für die Untersuchungen wurden zwei Testgebiete mit unterschiedlichem geologischem Untergrund gewählt. Das Ziel des ersten Untersuchungsgebietes im Nordwesten Deutschlands, in der Nähe von Cuxhaven, lag darin die Methodik zur Entwicklung der aus Gitterzellen aufgebauten 3D Widerstandsmodelle an Lockersedimenten im Bereich einer in neogene Ablagerungen eingeschnittenen pleistozänen subglazialen Rinne zu testen. Die 3D Widerstandsmodelle ermöglichen eine genaue Unterscheidung der verschiedenen Lithologien und ermöglichen die Abgrenzung sedimentärer Architekturelemente. Die neogene Abfolge besteht aus feinkörnigen marinen Schelf- und Küstenablagerungen und gliedert sich durch vier Diskordanzen. Hinweise auf den früheren Verlauf der Weser gibt es im oberen Miozän in Form einer erosiven Rinnenstruktur, die im Pliozän mit deltaischen Sedimenten gefüllt wurde. Die im Mittelpleistozän gebildete subglaziale Rinne (Elster-Eiszeit) schneidet sich bis zu 350 m tief in die neogenen Sedimente ein und ist zwischen 0,8 bis 2 km breit. Die mit Lockersedimenten gefüllte spätmiozäne Rinnenstruktur stellte wahrscheinlich einen bevorzugten Fließweg für die pleistozänen subglazialen Schmelzwässer dar und begünstigte das erosive Einschneiden. Mit Hilfe der 3D Widerstandsmodelle konnte die Rinnenfüllung detailliert dargestellt werden. Sie besteht aus einer komplex aufgebauten sedimentären Abfolge alternierender fein- bis grobkörniger elsterzeitlicher Sedimente, die von glazilakustrinen Sedimenten des Lauenburger Ton Komplexes und marinen Sedimenten des Holstein-Interglazials überlagert werden. Die durchgeführten Untersuchungen und Ergebnisse zeigen eine zuverlässige Methode, die für zukünftige Untersuchungen ähnlicher geologischer Räume angewendet werden kann. Im zweiten Untersuchungsraum ging es um die Erprobung einer Methode zur Bestimmung vorherrschender Gesteinstypen, Störungs- und Kluftsysteme unter Anwendung von Trendanalysen dreidimensionaler Widerstandsmuster, die auf hochauflösenden aeroelektromagnetischen Befliegungsdaten basieren. In Gebieten mit begrenzter Aufschlussanzahl liefern aerogeophysikalische Messungen entscheidende gesteinsspezifische Daten zur Interpretation der regionalen und lokalen geologischen Untergrundverhältnisse. Die Methode wurde anhand eines Gebietes in Deutschland im Bereich des Harzvorlandes, dem Lutter Sattel, getestet. Anhand des erstellten dreidimensionalen Widerstandsmodells dieser auf Salztektonik zurückzuführenden Sattelstruktur konnten laterale und vertikale Änderungen in den lithologischen Einheiten, im Wassergehalt und in der Geometrie der Sattelstruktur sowie Störungszonen identifiziert und kartiert werden. Das erstellte dreidimensionale Widerstandmodell der Sattelstruktur ermöglicht eine Unterscheidung der aufgestellten paläozoischen und mesozoischen Gesteine. Am elektrischen Widerstandsmodell angewendete Kurvenanalysen zeigen Trendmuster, die mit aus Aufschlüssen bekannten Störungs- und Kluftsystemen übereinstimmen. Der Vergleich zwischen Trendmustern des Widerstandsmodells mit den lokalen, in Aufschlüssen gemessenen Störungs- und Kluftsystemen zeigt vielversprechende Ergebnisse, die darauf hinweisen, dass aeroelektromagnetische Daten zur Identifizierung von Störungssystemen oberflächennah anstehender Sedimentgesteine geeignet sind. Demnach bieten aeroelektromagnetische Daten das Potential für eine direkte strukturanalytische Anwendung.

Ziele für nachhaltige Entwicklung

Zitieren

Download
@phdthesis{493dd5d3e8db424884e66e2929f13776,
title = "Development of high-resolution 3D geological subsurface models based on airborne electromagnetic data: case studies from the Cuxhaven tunnel valley and the Lutter anticline, northern Germany",
abstract = "Airborne electromagnetics (AEM) is an efficient technique for geophysical investigations of the shallow subsurface and has successfully been applied in various geological settings to analyse the depositional architecture for groundwater and environmental purposes. However, interpretation of AEM data is often restricted to 1D inversion results imaged on 2D resistivity maps and vertical resistivity sections. The integration of geophysical data based on AEM surveys, with geological data is often missing and consequently this deficiency leads to uncertainties in the interpretation process. The aim of this thesis is to provide an improved methodology for the geological interpretation of AEM data and the construction of more realistic 3D subsurface models. This is achieved by the development of integrated workflows and 3D modelling approaches in the Paradigm{\textregistered} GOCAD software, based on the combination of different geophysical and geological datasets (airborne electromagnetic data (AEM), depth maps from the digital Geotectonic Atlas of Northwestern Germany and the German North Sea, 2D reflection seismic sections and well logs). The results of 1D AEM inversion were geostatistical analysed and interpolated in a 3D resistivity gridding procedure to create continuous 3D resistivity grids of the subsurface. Subsequently, geological interpretations have been performed by combining with, and validating against geological depth maps, borehole and reflection seismic data and high-quality topographic maps. For the research, two test sites with different geological settings were chosen. The primary aim of the first study area near Cuxhaven, northwest Germany, was to test the 3D resistivity gridding procedure for unconsolidated rock, where Neogene sediments are incised by a Pleistocene tunnel valley. The 3D resistivity grids clearly allow to distinguish between different lithologies and enabling the detection of major bounding surfaces and architectural elements. The Neogene succession is subdivided by four unconformities and consists of fine-grained shelf to marginal marine deposits. At the end of the Miocene, an incised valley was formed and filled with Pliocene delta deposits, probably indicating a paleo-course of the River Weser. The Middle Pleistocene (Elsterian) tunnel valley is up to 350 m deep, 0.8-2 km wide, and incised into the Neogene succession. The unconsolidated fill of the Late Miocene to Pliocene incised valley probably formed a preferred pathway for the Pleistocene meltwater flows, thus favouring the incision. Based on the 3D AEM resistivity models the tunnel valley fill could be imaged in high detail. It consists of a complex sedimentary succession with alternating fine- and coarse-grained Elsterian meltwater deposits, overlain by glaciolacustrine (Lauenburg Clay Complex) and marine Holsteinian interglacial deposits. The applied approaches and results show a reliable methodology, especially for future investigations of similar geological settings. The aim of the second case study was to test a method for the predictive mapping of rock types and fracture orientations in sedimentary rocks using a trend analysis of 3D resistivity pattern based on airborne electromagnetic high-resolution data. For areas with limited exposure, the airborne geophysical data approach is an important method for both, regional-scale geological mapping and local structural analysis. The method was tested in the area of the Lutter anticline structure in the northwestern Harz foreland, Germany. The developed 3D resistivity grid of this salt-cored anticline was used to map resistivity trends that are related to lateral and vertical changes in lithology, water content, anticline geometry, and the location of fractures. The 3D resistivity grid clearly allows to distinguish between rocks of Palaeozoic and Mesozoic rocks. Lineation patterns obtained from a curvature trend analysis based on the 3D resistivity grid reflect the orientation of the local fault and fracture systems. The comparison of the resistivity pattern and the trend of fractures and faults, derived from outcrop analyses, shows promising results, which imply that AEM data can allow the detection and visualization of near-surface, brittle, structural elements developed in sedimentary rocks. This opens the door to use AEM as an efficient tool for regional structural mapping.",
author = "Dominik Steinmetz",
year = "2019",
doi = "10.15488/7462",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Development of high-resolution 3D geological subsurface models based on airborne electromagnetic data

T2 - case studies from the Cuxhaven tunnel valley and the Lutter anticline, northern Germany

AU - Steinmetz, Dominik

PY - 2019

Y1 - 2019

N2 - Airborne electromagnetics (AEM) is an efficient technique for geophysical investigations of the shallow subsurface and has successfully been applied in various geological settings to analyse the depositional architecture for groundwater and environmental purposes. However, interpretation of AEM data is often restricted to 1D inversion results imaged on 2D resistivity maps and vertical resistivity sections. The integration of geophysical data based on AEM surveys, with geological data is often missing and consequently this deficiency leads to uncertainties in the interpretation process. The aim of this thesis is to provide an improved methodology for the geological interpretation of AEM data and the construction of more realistic 3D subsurface models. This is achieved by the development of integrated workflows and 3D modelling approaches in the Paradigm® GOCAD software, based on the combination of different geophysical and geological datasets (airborne electromagnetic data (AEM), depth maps from the digital Geotectonic Atlas of Northwestern Germany and the German North Sea, 2D reflection seismic sections and well logs). The results of 1D AEM inversion were geostatistical analysed and interpolated in a 3D resistivity gridding procedure to create continuous 3D resistivity grids of the subsurface. Subsequently, geological interpretations have been performed by combining with, and validating against geological depth maps, borehole and reflection seismic data and high-quality topographic maps. For the research, two test sites with different geological settings were chosen. The primary aim of the first study area near Cuxhaven, northwest Germany, was to test the 3D resistivity gridding procedure for unconsolidated rock, where Neogene sediments are incised by a Pleistocene tunnel valley. The 3D resistivity grids clearly allow to distinguish between different lithologies and enabling the detection of major bounding surfaces and architectural elements. The Neogene succession is subdivided by four unconformities and consists of fine-grained shelf to marginal marine deposits. At the end of the Miocene, an incised valley was formed and filled with Pliocene delta deposits, probably indicating a paleo-course of the River Weser. The Middle Pleistocene (Elsterian) tunnel valley is up to 350 m deep, 0.8-2 km wide, and incised into the Neogene succession. The unconsolidated fill of the Late Miocene to Pliocene incised valley probably formed a preferred pathway for the Pleistocene meltwater flows, thus favouring the incision. Based on the 3D AEM resistivity models the tunnel valley fill could be imaged in high detail. It consists of a complex sedimentary succession with alternating fine- and coarse-grained Elsterian meltwater deposits, overlain by glaciolacustrine (Lauenburg Clay Complex) and marine Holsteinian interglacial deposits. The applied approaches and results show a reliable methodology, especially for future investigations of similar geological settings. The aim of the second case study was to test a method for the predictive mapping of rock types and fracture orientations in sedimentary rocks using a trend analysis of 3D resistivity pattern based on airborne electromagnetic high-resolution data. For areas with limited exposure, the airborne geophysical data approach is an important method for both, regional-scale geological mapping and local structural analysis. The method was tested in the area of the Lutter anticline structure in the northwestern Harz foreland, Germany. The developed 3D resistivity grid of this salt-cored anticline was used to map resistivity trends that are related to lateral and vertical changes in lithology, water content, anticline geometry, and the location of fractures. The 3D resistivity grid clearly allows to distinguish between rocks of Palaeozoic and Mesozoic rocks. Lineation patterns obtained from a curvature trend analysis based on the 3D resistivity grid reflect the orientation of the local fault and fracture systems. The comparison of the resistivity pattern and the trend of fractures and faults, derived from outcrop analyses, shows promising results, which imply that AEM data can allow the detection and visualization of near-surface, brittle, structural elements developed in sedimentary rocks. This opens the door to use AEM as an efficient tool for regional structural mapping.

AB - Airborne electromagnetics (AEM) is an efficient technique for geophysical investigations of the shallow subsurface and has successfully been applied in various geological settings to analyse the depositional architecture for groundwater and environmental purposes. However, interpretation of AEM data is often restricted to 1D inversion results imaged on 2D resistivity maps and vertical resistivity sections. The integration of geophysical data based on AEM surveys, with geological data is often missing and consequently this deficiency leads to uncertainties in the interpretation process. The aim of this thesis is to provide an improved methodology for the geological interpretation of AEM data and the construction of more realistic 3D subsurface models. This is achieved by the development of integrated workflows and 3D modelling approaches in the Paradigm® GOCAD software, based on the combination of different geophysical and geological datasets (airborne electromagnetic data (AEM), depth maps from the digital Geotectonic Atlas of Northwestern Germany and the German North Sea, 2D reflection seismic sections and well logs). The results of 1D AEM inversion were geostatistical analysed and interpolated in a 3D resistivity gridding procedure to create continuous 3D resistivity grids of the subsurface. Subsequently, geological interpretations have been performed by combining with, and validating against geological depth maps, borehole and reflection seismic data and high-quality topographic maps. For the research, two test sites with different geological settings were chosen. The primary aim of the first study area near Cuxhaven, northwest Germany, was to test the 3D resistivity gridding procedure for unconsolidated rock, where Neogene sediments are incised by a Pleistocene tunnel valley. The 3D resistivity grids clearly allow to distinguish between different lithologies and enabling the detection of major bounding surfaces and architectural elements. The Neogene succession is subdivided by four unconformities and consists of fine-grained shelf to marginal marine deposits. At the end of the Miocene, an incised valley was formed and filled with Pliocene delta deposits, probably indicating a paleo-course of the River Weser. The Middle Pleistocene (Elsterian) tunnel valley is up to 350 m deep, 0.8-2 km wide, and incised into the Neogene succession. The unconsolidated fill of the Late Miocene to Pliocene incised valley probably formed a preferred pathway for the Pleistocene meltwater flows, thus favouring the incision. Based on the 3D AEM resistivity models the tunnel valley fill could be imaged in high detail. It consists of a complex sedimentary succession with alternating fine- and coarse-grained Elsterian meltwater deposits, overlain by glaciolacustrine (Lauenburg Clay Complex) and marine Holsteinian interglacial deposits. The applied approaches and results show a reliable methodology, especially for future investigations of similar geological settings. The aim of the second case study was to test a method for the predictive mapping of rock types and fracture orientations in sedimentary rocks using a trend analysis of 3D resistivity pattern based on airborne electromagnetic high-resolution data. For areas with limited exposure, the airborne geophysical data approach is an important method for both, regional-scale geological mapping and local structural analysis. The method was tested in the area of the Lutter anticline structure in the northwestern Harz foreland, Germany. The developed 3D resistivity grid of this salt-cored anticline was used to map resistivity trends that are related to lateral and vertical changes in lithology, water content, anticline geometry, and the location of fractures. The 3D resistivity grid clearly allows to distinguish between rocks of Palaeozoic and Mesozoic rocks. Lineation patterns obtained from a curvature trend analysis based on the 3D resistivity grid reflect the orientation of the local fault and fracture systems. The comparison of the resistivity pattern and the trend of fractures and faults, derived from outcrop analyses, shows promising results, which imply that AEM data can allow the detection and visualization of near-surface, brittle, structural elements developed in sedimentary rocks. This opens the door to use AEM as an efficient tool for regional structural mapping.

U2 - 10.15488/7462

DO - 10.15488/7462

M3 - Doctoral thesis

CY - Hannover

ER -