Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1239-1254 |
Seitenumfang | 16 |
Fachzeitschrift | International Journal of Advanced Manufacturing Technology |
Jahrgang | 118 |
Ausgabenummer | 3-4 |
Frühes Online-Datum | 15 Sept. 2021 |
Publikationsstatus | Veröffentlicht - Jan. 2022 |
Extern publiziert | Ja |
Abstract
A promising approach to address the mismatch of bone and implant stiffness, leading to the stress-shielding phenomenon, is the application of functionally graded materials with adjusted porosity. Although defect formation and porosity in laser-based powder bed fusion of metals (PBF-LB/M) are already widely investigated, so far there is little research on the influences and parameter interactions regarding the pore characteristics. This work therefore aims to provide an empirical process model for the generation of gas porosity in the PBF-LB process of Ti-6Al-4V. Parts with closed locally adjusted porosity of ∼ 6 % achieved through gaseous pores instead of lack of fusion defects or lattice structures were built by PBF-LB. Parameter variation and evaluation of relative density, pore size and sphericity was done in accordance with the design of experiments approach. A parameter set for maximum gas porosity (laser power of 189 W, scanning speed of 375 mm/s, hatch spacing of 150 μm) was determined for a constant layer thickness of 30 μm and a spot diameter of 35 μm. Tensile tests were conducted with specimens consisting of a core with maximum gas porosity or lack of fusion porosity, respectively, and a dense skin as well as fully dense specimens. Whereas lack of fusion defects can lead to significant reduction of stiffness of 32.2 %, the elastic modulus remained unchanged at 110.0 GPa when implementing spherical pores. Nevertheless, the found superior strength and ductility of specimens with gas porous core (> 1100 MPa and > 0.05 mm/mm, respectively) underline the advantages of adjusted porosity for the application in functionally graded materials and lightweight applications.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
- Informatik (insg.)
- Software
- Ingenieurwesen (insg.)
- Maschinenbau
- Informatik (insg.)
- Angewandte Informatik
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Advanced Manufacturing Technology, Jahrgang 118, Nr. 3-4, 01.2022, S. 1239-1254.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Development of an empirical process model for adjusted porosity in laser-based powder bed fusion of Ti-6Al-4V
AU - Emminghaus, Nicole
AU - Paul, Johanna
AU - Hoff, Christian
AU - Hermsdorf, Jörg
AU - Kaierle, Stefan
PY - 2022/1
Y1 - 2022/1
N2 - A promising approach to address the mismatch of bone and implant stiffness, leading to the stress-shielding phenomenon, is the application of functionally graded materials with adjusted porosity. Although defect formation and porosity in laser-based powder bed fusion of metals (PBF-LB/M) are already widely investigated, so far there is little research on the influences and parameter interactions regarding the pore characteristics. This work therefore aims to provide an empirical process model for the generation of gas porosity in the PBF-LB process of Ti-6Al-4V. Parts with closed locally adjusted porosity of ∼ 6 % achieved through gaseous pores instead of lack of fusion defects or lattice structures were built by PBF-LB. Parameter variation and evaluation of relative density, pore size and sphericity was done in accordance with the design of experiments approach. A parameter set for maximum gas porosity (laser power of 189 W, scanning speed of 375 mm/s, hatch spacing of 150 μm) was determined for a constant layer thickness of 30 μm and a spot diameter of 35 μm. Tensile tests were conducted with specimens consisting of a core with maximum gas porosity or lack of fusion porosity, respectively, and a dense skin as well as fully dense specimens. Whereas lack of fusion defects can lead to significant reduction of stiffness of 32.2 %, the elastic modulus remained unchanged at 110.0 GPa when implementing spherical pores. Nevertheless, the found superior strength and ductility of specimens with gas porous core (> 1100 MPa and > 0.05 mm/mm, respectively) underline the advantages of adjusted porosity for the application in functionally graded materials and lightweight applications.
AB - A promising approach to address the mismatch of bone and implant stiffness, leading to the stress-shielding phenomenon, is the application of functionally graded materials with adjusted porosity. Although defect formation and porosity in laser-based powder bed fusion of metals (PBF-LB/M) are already widely investigated, so far there is little research on the influences and parameter interactions regarding the pore characteristics. This work therefore aims to provide an empirical process model for the generation of gas porosity in the PBF-LB process of Ti-6Al-4V. Parts with closed locally adjusted porosity of ∼ 6 % achieved through gaseous pores instead of lack of fusion defects or lattice structures were built by PBF-LB. Parameter variation and evaluation of relative density, pore size and sphericity was done in accordance with the design of experiments approach. A parameter set for maximum gas porosity (laser power of 189 W, scanning speed of 375 mm/s, hatch spacing of 150 μm) was determined for a constant layer thickness of 30 μm and a spot diameter of 35 μm. Tensile tests were conducted with specimens consisting of a core with maximum gas porosity or lack of fusion porosity, respectively, and a dense skin as well as fully dense specimens. Whereas lack of fusion defects can lead to significant reduction of stiffness of 32.2 %, the elastic modulus remained unchanged at 110.0 GPa when implementing spherical pores. Nevertheless, the found superior strength and ductility of specimens with gas porous core (> 1100 MPa and > 0.05 mm/mm, respectively) underline the advantages of adjusted porosity for the application in functionally graded materials and lightweight applications.
KW - Additive manufacturing
KW - Design of experiments
KW - Functionally graded materials
KW - Laser-based powder bed fusion
KW - Porosity
KW - Ti-6Al-4V
UR - http://www.scopus.com/inward/record.url?scp=85114864655&partnerID=8YFLogxK
U2 - 10.1007/s00170-021-07847-0
DO - 10.1007/s00170-021-07847-0
M3 - Article
AN - SCOPUS:85114864655
VL - 118
SP - 1239
EP - 1254
JO - International Journal of Advanced Manufacturing Technology
JF - International Journal of Advanced Manufacturing Technology
SN - 0268-3768
IS - 3-4
ER -