Details
Originalsprache | undefiniert/unbekannt |
---|---|
Publikationsstatus | Veröffentlicht - Dez. 2021 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2021.
Publikation: Konferenzbeitrag › Abstract › Forschung
}
TY - CONF
T1 - Development of a Virtual Environment for Quantum Technologies on Satellite-Based Next-Generation Gravimetry Missions
AU - Meister, Jaspar
AU - Leipner, Andreas
AU - Bremer, Stefanie
AU - HosseiniArani, Alireza
AU - List, Meike
AU - Schilling, Manuel
PY - 2021/12
Y1 - 2021/12
N2 - The success of GRACE-FO and its predecessors has demonstrated to the scientific community the benefits of satellite gravimetry for monitoring mass variations on the Earths surface and its interior. However, the demand for increasingly higher spatial and temporal resolution of gravity field solutions has brought into focus the need for next-generation gravimetry missions (NGGMs). To this end, the German Aerospace Center (DLR) has established the Institute for Satellite Geodesy and Inertial Sensing, which investigates the potential of quantum technologies for NGGMs. Currently, quantum sensors for gravity field satellite missions are being developed, which include cold atom interferometry (CAI) gradiometers and optical clocks. In addition, quantum accelerometers and quantum inertial sensors are being studied for the application on satellites. NGGM concepts are analyzed using the Hybrid Simulation Platform for Space Systems (HPS) developed by ZARM (University of Bremen) and DLR. With the adaptation of HPS for the French MICROSCOPE mission, HPS was already capable of simulating the dynamics of the satellite and its test masses on a helio-synchronous orbit in an altitude of 700 km. The simulation included environmental models for the atmosphere, magnetic field, radiation, and gravity field, as well as a detailed model of the on-board capacitive sensors. Efforts have been made to extend the simulation platform to include quantum sensors. This introduces new challenges for pointing accuracy and noise determination, which place more stringent requirements on the computation of environmental disturbances in lower orbits suitable for NGGMs. Therefore, satellite vibration and thermal models are being investigated for use in HPS, with the goal of providing a complete testbed for quantum technologies in gravimetry missions. This paper presents the current status of the research....
AB - The success of GRACE-FO and its predecessors has demonstrated to the scientific community the benefits of satellite gravimetry for monitoring mass variations on the Earths surface and its interior. However, the demand for increasingly higher spatial and temporal resolution of gravity field solutions has brought into focus the need for next-generation gravimetry missions (NGGMs). To this end, the German Aerospace Center (DLR) has established the Institute for Satellite Geodesy and Inertial Sensing, which investigates the potential of quantum technologies for NGGMs. Currently, quantum sensors for gravity field satellite missions are being developed, which include cold atom interferometry (CAI) gradiometers and optical clocks. In addition, quantum accelerometers and quantum inertial sensors are being studied for the application on satellites. NGGM concepts are analyzed using the Hybrid Simulation Platform for Space Systems (HPS) developed by ZARM (University of Bremen) and DLR. With the adaptation of HPS for the French MICROSCOPE mission, HPS was already capable of simulating the dynamics of the satellite and its test masses on a helio-synchronous orbit in an altitude of 700 km. The simulation included environmental models for the atmosphere, magnetic field, radiation, and gravity field, as well as a detailed model of the on-board capacitive sensors. Efforts have been made to extend the simulation platform to include quantum sensors. This introduces new challenges for pointing accuracy and noise determination, which place more stringent requirements on the computation of environmental disturbances in lower orbits suitable for NGGMs. Therefore, satellite vibration and thermal models are being investigated for use in HPS, with the goal of providing a complete testbed for quantum technologies in gravimetry missions. This paper presents the current status of the research....
M3 - Abstract
ER -