Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 219-244 |
Seitenumfang | 26 |
Fachzeitschrift | Journal of Physics A: Mathematical and General |
Jahrgang | 30 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 7 Jan. 1997 |
Abstract
We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Mathematische Physik
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Physics A: Mathematical and General, Jahrgang 30, Nr. 1, 07.01.1997, S. 219-244.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Determinant representation for a quantum correlation function of the lattice sine-Gordon model
AU - Eßler, Fabian H.L.
AU - Frahm, Holger
AU - Its, Alexander R.
AU - Korepin, Vladimir E.
PY - 1997/1/7
Y1 - 1997/1/7
N2 - We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained.
AB - We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained.
U2 - 10.1088/0305-4470/30/1/016
DO - 10.1088/0305-4470/30/1/016
M3 - Article
AN - SCOPUS:0031556895
VL - 30
SP - 219
EP - 244
JO - Journal of Physics A: Mathematical and General
JF - Journal of Physics A: Mathematical and General
SN - 0305-4470
IS - 1
ER -