Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2095-2109 |
Seitenumfang | 15 |
Fachzeitschrift | Annali di Matematica Pura ed Applicata |
Jahrgang | 203 |
Ausgabenummer | 5 |
Frühes Online-Datum | 15 März 2024 |
Publikationsstatus | Veröffentlicht - Okt. 2024 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annali di Matematica Pura ed Applicata, Jahrgang 203, Nr. 5, 10.2024, S. 2095-2109.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Descent of tautological sheaves from Hilbert schemes to Enriques manifolds
AU - Reede, Fabian
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/10
Y1 - 2024/10
N2 - Let X be a K3 surface which doubly covers an Enriques surface S. If n∈N is an odd number, then the Hilbert scheme of n-points X [n] admits a natural quotient S [n]. This quotient is an Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable sheaves on S [n] and study some of their properties.
AB - Let X be a K3 surface which doubly covers an Enriques surface S. If n∈N is an odd number, then the Hilbert scheme of n-points X [n] admits a natural quotient S [n]. This quotient is an Enriques manifold in the sense of Oguiso and Schröer. In this paper we construct slope stable sheaves on S [n] and study some of their properties.
KW - math.AG
KW - Moduli spaces
KW - Primary: 14F06
KW - 14D20
KW - 14J28
KW - Secondary: 14F08
KW - Stable sheaves
KW - Enriques manifolds
UR - http://www.scopus.com/inward/record.url?scp=85187949815&partnerID=8YFLogxK
U2 - 10.1007/s10231-024-01437-z
DO - 10.1007/s10231-024-01437-z
M3 - Article
VL - 203
SP - 2095
EP - 2109
JO - Annali di Matematica Pura ed Applicata
JF - Annali di Matematica Pura ed Applicata
SN - 0373-3114
IS - 5
ER -